Tue, 16 Nov 2021
14:00
L3

Homology torsion growth in finitely presented pro-p groups

Nikolay Nikolov
(Oxford University)
Abstract

Let $G$ be a finitely presented residually finite group. We are interested in the growth of size of the torsion of $H^{ab}$ as a function of $|G:H|$ where $H$ ranges over normal subgroups of finite index in $G$. It is easy to see that this grows at most exponentially in terms of $|G:H|$. Of particular interest is the case when $G$ is an arithmetic hyperbolic 3-manifold group and $H$ ranges over its congruence subgroups. Proving exponential lower bounds on the torsion appears to be difficult and in this talk I will focus on the situation of finitely presented pro-$p$ groups.

In contrast with abstract groups I will show that in finitely presented pro-$p$ groups torsion in the abelianizations can grow arbitrarily fast. The examples are rather 'large' pro-$p$ groups, in particular they are virtually Golod-Shafarevich. When we restrict to $p$-adic analytic groups the torsion growth is at most polynomial.

Tue, 16 Nov 2021

14:00 - 15:00
C5

TBA

George Cantwell
(Santa Fe Institute)
Abstract

TBA

Tue, 16 Nov 2021

12:30 - 13:30
C5

Contact problems in glaciology

Gonzalo Gonzalez De Diego
(Mathematical Institute (University of Oxford))
Abstract

Several problems of great importance in the study of glaciers and ice sheets involve processes of attachment and reattachment of the ice from the bedrock. Consider, for example, an ice sheet sliding from the continent into the ocean, where it goes afloat. Another example is that of subglacial cavitation, a fundamental mechanism in glacial sliding where the ice detaches from the bedrock along the downstream area of an obstacle. Such problems are generally modelled as a viscous Stokes flow with a free boundary and contact boundary conditions. In this talk, I will present a framework for solving such problems numerically. I will start by introducing the mathematical formulation of these viscous contact problems and the challenges that arise when trying to approximate them numerically. I will then show how, given a stable scheme for the free boundary equation, one can build a penalty formulation for the viscous contact problem in such a way that the resulting algorithm remains stable and robust.

Mon, 15 Nov 2021

16:00 - 17:00

Measuring association with Wasserstein distances

JOHANNES C W WIESEL
(Columbia University (New York))
Abstract

 

Title: Measuring association with Wasserstein distances

Abstract: Let π ∈ Π(μ, ν) be a coupling between two probability measures μ and ν on a Polish space. In this talk we propose and study a class of nonparametric measures of association between μ and ν, which we call Wasserstein correlation coefficients. These coefficients are based on the Wasserstein distance between ν and the disintegration of π with respect to the first coordinate. We also establish basic statistical properties of this new class of measures: we develop a statistical theory for strongly consistent estimators and determine their convergence rate in the case of compactly supported measures μ and ν. Throughout our analysis we make use of the so-called adapted/bicausal Wasserstein distance, in particular we rely on results established in [Backhoff, Bartl, Beiglböck, Wiesel. Estimating processes in adapted Wasserstein distance. 2020]. Our approach applies to probability laws on general Polish spaces.

Mon, 15 Nov 2021

16:00 - 17:00
C1

Polynomial Pell equation

Nikoleta Kalaydzhieva
Abstract

In a world of polynomial Pell’s equations, where the integers are replaced by polynomials with complex coefficients, and its smallest solution is used to generate all other solutions $(u_{n},v_{n})$, $n\in\mathbb{Z}$. One junior number theory group will embark on a journey in search of the properties of the factors of $v_{n}(t)$. There will be Galois extensions, there will be estimations and of course there will be loglogs.

Mon, 15 Nov 2021
15:45
Virtual

Hyperbolic 5-manifolds that fiber over the circle

Bruno Martelli
(Universita di Pisa)
Abstract

We show that the existence of hyperbolic manifolds fibering over the circle is not a phenomenon confined to dimension 3 by exhibiting some examples in dimension 5. More generally, there are hyperbolic manifolds with perfect circle-valued Morse functions in all dimensions $n\le 5$. As a consequence, there are hyperbolic groups with finite-type subgroups that are not hyperbolic.

The main tool is Bestvina - Brady theory enriched with a combinatorial game recently introduced by Jankiewicz, Norin and Wise. These are joint works with Battista, Italiano, and Migliorini.

Mon, 15 Nov 2021
14:15
L4

TBA

Huaxin (Henry) Liu
((Oxford University))
Abstract

TBA

Mon, 15 Nov 2021
12:45
L4

Kondo line defect and affine oper/Gaudin correspondence

Jingxiang Wu
(Oxford)
Abstract

It is well-known that the spectral data of the Gaudin model associated to a finite semisimple Lie algebra is encoded by the differential data of certain flat connections associated to the Langlands dual Lie algebra on the projective line with regular singularities, known as oper/Gaudin correspondence. Recently, some progress has been made in understanding the correspondence associated with affine Lie algebras. I will present a physical perspective from Kondo line defects, physically describing a local impurity chirally coupled to the bulk 2d conformal field theory. The Kondo line defects exhibit interesting integrability properties and wall-crossing behaviors, which are encoded by the generalized monodromy data of affine opers. In the physics literature, this reproduces the known ODE/IM correspondence. I will explain how the recently proposed 4d Chern Simons theory provides a new perspective which suggests the possibility of a physicists’ proof. 

Fri, 12 Nov 2021

16:00 - 17:00
L1

North Meets South

Anna Parlak and Gill Grindstaff
(Mathematical Institute)
Abstract

This session will take place live in L1 and online. A Teams link will be shared 30 minutes before the session begins.

Fri, 12 Nov 2021

15:00 - 16:00
Virtual

Stable ranks for data analysis

Professor Martina Scolamiero
(KTH Royal Institute of Technology)
Abstract

Hierarchical stabilisation, allows us to define topological invariants for data starting from metrics to compare persistence modules. In this talk I will highlight the variety of metrics that can be constructed in an axiomatic way, via so called Noise Systems. The focus will then be on one invariant obtained through hierarchical stabilisation, the Stable Rank, which the TDA group at KTH has been studying in the last years. In particular I will address the problem of using this invariant on noisy and heterogeneous data. Lastly, I will illustrate the use of stable ranks on real data within a project on microglia morphology description, in collaboration with S. Siegert’s group, K. Hess and L. Kanari. 

Fri, 12 Nov 2021

14:00 - 15:00
C3

sl_2-triples in classical Lie algebras over fields of positive characteristic

Rachel Pengelly
(University of Birmingham)
Abstract

Let $K$ be an algebraically closed field. Given three elements of some Lie algebra over $K$, we say that these elements form an $sl_2$-triple if they generate a subalgebra which is a homomorphic image of $sl_2(K).$ In characteristic 0, the Jacobson-Morozov theorem provides a bijection between the orbits of nilpotent elements of the Lie algebra and the orbits of $sl_2$-triples. In this talk I will discuss the progress made in extending this result to fields of characteristic $p$. In particular, I will focus on the results in classical Lie algebras, which can be found as subsets of $gl_n(K)$.

Fri, 12 Nov 2021

14:00 - 15:00
L3

Tools and approaches to build and analyze multiscale computational models in biology -TB as a case study

Prof Denise Kirschner
(Department of Microbiology and Immunology University of Michigan Medical Schoo)
Abstract

In this talk, I will give an overview of our multi-scale models that we have developed to study a number of aspects of the immune response to infection.  Scales that we explore range from molecular to the whole-host scale.  We are also able to study virtual populations and perform simulated clinical trials. We apply these approaches to study Tuberculosis, the disease caused by inhalation of the bacteria, Mycobacterium tuberculosis. It has infected 2 billion people in the world today, and kills 1-2 million people each year, even more than COVID-19. Our goal is to aid in understanding infection dynamics, treatment and vaccines to improve outcomes for this global health burden. I will discuss our frameworks for multi-scale modeling, and the analysis tools and statistical approaches that we have honed to better understand different outcomes at different scales.

Thu, 11 Nov 2021

16:00 - 17:00
L5

Approximation of mean curvature flow with generic singularities by smooth flows with surgery

Joshua Daniels-Holgate
(University of Warwick)
Abstract

We construct smooth flows with surgery that approximate weak mean curvature flows with only spherical and neck-pinch singularities. This is achieved by combining the recent work of Choi-Haslhofer-Hershkovits, and Choi-Haslhofer-Hershkovits-White, establishing canonical neighbourhoods of such singularities, with suitable barriers to flows with surgery. A limiting argument is then used to control these approximating flows. We demonstrate an application of this surgery flow by improving the entropy bound on the low-entropy Schoenflies conjecture.

Thu, 11 Nov 2021

16:00 - 17:00
L3

Online Stochastic Optimization of SDEs

JUSTIN SIRIGNANO
(University of Oxford)
Abstract

We develop a new online algorithm for optimizing over the stationary distribution of stochastic differential equation (SDE) models. The algorithm optimizes over the parameters in the multi-dimensional SDE model in order to minimize the distance between the model's stationary distribution and the target statistics. We rigorously prove convergence for linear SDE models and present numerical results for nonlinear examples. The proof requires analysis of the fluctuations of the parameter evolution around the unbiased descent direction under the stationary distribution. Bounds on the fluctuations are challenging to obtain due to the online nature of the algorithm (e.g., the stationary distribution will continuously change as the parameters change). We prove bounds on a new class of Poisson partial differential equations, which are then used to analyze the parameter fluctuations in the algorithm. This presentation is based upon research with Ziheng Wang.
 

Thu, 11 Nov 2021
14:00
L3

Higher Form Symmetries: Part 2

Dewi Gould
((Oxford University))
Further Information

Junior strings is a seminar series where DPhil students present topics of common interest that do not necessarily overlap with their own research areas. This is primarily aimed at PhD students and post-docs but everyone is welcome.

Thu, 11 Nov 2021
14:00
Virtual

A Fast, Stable QR Algorithm for the Diagonalization of Colleague Matrices

Vladimir Rokhlin
(Yale University)
Abstract

 

The roots of a function represented by its Chebyshev expansion are known to be the eigenvalues of the so-called colleague matrix, which is a Hessenberg matrix that is the sum of a symmetric tridiagonal matrix and a rank 1 perturbation. The rootfinding problem is thus reformulated as an eigenproblem, making the computation of the eigenvalues of such matrices a subject of significant practical interest. To obtain the roots with the maximum possible accuracy, the eigensolver used must posess a somewhat subtle form of stability.

In this talk, I will discuss a recently constructed algorithm for the diagonalization of colleague matrices, satisfying the relevant stability requirements.  The scheme has CPU time requirements proportional to n^2, with n the dimensionality of the problem; the storage requirements are proportional to n. Furthermore, the actual CPU times (and storage requirements) of the procedure are quite acceptable, making it an approach of choice even for small-scale problems. I will illustrate the performance of the algorithm with several numerical examples.

--

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact @email.

 

Thu, 11 Nov 2021

12:00 - 13:00
L3

(Timms) Simplified battery models via homogenisation

Travis Thompson & Robert Timms
(University of Oxford)
Further Information

Travis Thompson and Robert Timms are both OCIAM members. Travis is a post-doc working with Professor Alain Goriely in the Mathematics & Mechanics of Brain Trauma group. Robert Timms is a post-doc whose research focuses on the Mathematical Modelling of Batteries.

Abstract

 Mathematics for the mind: network dynamical systems for neurodegenerative disease pathology

Travis Thompson

Can mathematics understand neurodegenerative diseases?  The modern medical perspective on neurological diseases has evolved, slowly, since the 20th century but recent breakthroughs in medical imaging have quickly transformed medicine into a quantitative science.  Today, mathematical modeling and scientific computing allow us to go farther than observation alone.  With the help of  computing, experimental and data-informed mathematical models are leading to new clinical insights into how neurodegenerative diseases, such as Alzheimer's disease, may develop in the human brain.  In this talk, I will overview my work in the construction, analysis and solution of data and clinically-driven mathematical models related to AD pathology.  We will see that mathematical modeling and scientific computing are indeed indispensible for cultivating a data-informed understanding of the brain, AD and for developing potential treatments.

 

___________________________________________________________________________________________________

Simplified battery models via homogenisation  

Robert Timms

Lithium-ion batteries (LIBs) are one of the most popular forms of energy storage for many modern devices, with applications ranging from portable electronics to electric vehicles. Improving both the performance and lifetime of LIBs by design changes that increase capacity, reduce losses and delay degradation effects is a key engineering challenge. Mathematical modelling is an invaluable tool for tackling this challenge: accurate and efficient models play a key role in the design, management, and safe operation of batteries. Models of batteries span many length scales, ranging from atomistic models that may be used to predict the rate of diffusion of lithium within the active material particles that make up the electrodes, right through to models that describe the behaviour of the thousands of cells that make up a battery pack in an electric vehicle. Homogenisation can be used to “bridge the gap” between these disparate length scales, and allows us to develop computationally efficient models suitable for optimising cell design.

Wed, 10 Nov 2021

16:00 - 17:00
C5

Orbifolds - more than just spaces

Christoph Weis
(University of Oxford)
Abstract

Orbifolds are a generalisation of manifolds which allow group actions to enter the picture. The most basic examples of orbifolds are quotients of manifolds by (non-free) finite group actions.
I will give an introduction to orbifolds, recalling a number of philosophically different but mathematically equivalent definitions. For starters, I will try to convince you that "a space locally modelled on a quotient of R^n by a finite group" is misleading. I will draw many pictures of orbifolds, make the connection to complexes of groups, and explain the definition of a map of orbifolds. In the process, I hope to demystify the definition of the orbifold fundamental group, the orbifold Euler characteristic and orbifold cohomology.

Wed, 10 Nov 2021

14:00 - 15:00
Virtual

3d N=4 theories on an elliptic curve

Daniel Zhang
(Cambridge DAMTP)
Abstract

I will discuss 3d N=4 supersymmetric gauge theories compactified on an elliptic curve, and how this set-up physically realises recent mathematical results on the equivariant elliptic cohomology of symplectic resolutions. In particular, I will describe the Berry connection for supersymmetric ground states, and in doing so connect the elliptic cohomology of the Higgs branch with spectral data of doubly periodic monopoles. I will show that boundary conditions, via a consideration of boundary ’t Hooft anomalies, naturally represent elliptic cohomology classes. Finally, if I have time, I will discuss mirror symmetry/symplectic duality in our framework, and physically recover concepts in elliptic cohomology such as the mother function, and the elliptic stable envelopes of Aganagic-Okounkov.


This talk will be based on https://arxiv.org/abs/2109.10907 with Mathew Bullimore.

Wed, 10 Nov 2021

10:00 - 12:00

Finite Element Exterior Calculus - Part 3

Kaibu Hu
(Oxford University)
Further Information

Location: VC Room

Structure: 4 x 2 hr Lectures

Part 1 - 27th October

Part 2 - 3rd November

Part 3 - 10th November

Part 4 - 17th November

Abstract

Many PDE models encode fundamental physical, geometric and topological structures. These structures may be lost in discretisations, and preserving them on the discrete level is crucial for the stability and efficiency of numerical methods. The finite element exterior calculus (FEEC) is a framework for constructing and analysing structure-preserving numerical methods for PDEs with ideas from topology, homological algebra and the Hodge theory. 

 

In this seminar, we present the theory and applications of FEEC. This includes analytic results (Hodge decomposition, regular potentials, compactness etc.), Hodge-Laplacian problems and their structure-preserving finite element discretisation, and applications in electromagnetism, fluid and solid mechanics. Knowledge on geometry and topology is not required as prerequisites.

 

References:

 

1. Arnold, D.N.: Finite Element Exterior Calculus. SIAM (2018) 

2. Arnold, D.N., Falk, R.S., Winther, R.: Finite element exterior calculus, homological techniques, and applications. Acta Numerica 15, 1 (2006) 

3. Arnold, D.N., Falk, R.S., Winther, R.: Finite element exterior calculus: from Hodge theory to numerical stability. Bulletin of the American Mathematical Society 47(2), 281–354 (2010) 

4. Arnold, D.N., Hu, K.: Complexes from complexes. Foundations of Computational Mathematics (2021)

Tue, 09 Nov 2021

16:00 - 17:00
C5

Equivariant higher twists over SU(n) and tori

Ulrich Pennig
(University of Cardiff)
Abstract

Twisted K-theory is an enrichment of topological K-theory that allows local coefficient systems called twists. For spaces and twists equipped with an action by a group, equivariant twisted K-theory provides an even finer invariant. Equivariant twists over Lie groups gained increasing importance in the subject due to a result by Freed, Hopkins and Teleman that relates the corresponding K-groups to the Verlinde ring of the associated loop group. From the point of view of homotopy theory only a small subgroup of all possible twists is considered in classical treatments. In this talk I will discuss a construction that is joint work with David Evans and produces interesting examples of non-classical twists over the Lie groups SU(n) and over tori constructed from exponential functors. They arise naturally as Fell bundles and are equivariant with respect to the conjugation action of the group on itself. For the determinant functor our construction reproduces the basic gerbe over SU(n) used by Freed, Hopkins and Teleman.

Tue, 09 Nov 2021

15:30 - 16:30
L6

Hermitian matrix model with non-trivial covariance and relations to quantum field theory

Alexander Hock
(University of Oxford)
Abstract

Hermitian matrix models with non-trivial covariance will be introduced. The Kontsevich Model is the prime example, which was used to prove Witten's conjecture about the generating function of intersection numbers of the moduli space $\overline{\mathcal{M}}_{g,n}$. However, we will discuss these models in a different direction, namely as a quantum field theory. As a formal matrix model,  the correlation functions of these models have a unique combinatorial/perturbative interpretation in the sense of Feynman diagrams. In particular, the additional structure (in comparison to ordinary quantum field theories) gives the possibility to compute exact expressions, which are resummations of infinitely many Feynman diagrams. For the easiest topologies, these exact expressions (given by implicitly defined functions) will be presented and discussed. If time remains, higher topologies are discussed by a connection to Topological Recursion.

Tue, 09 Nov 2021
14:30
L3

TBA

Fede Danieli
(University of Oxford)
Abstract

TBA