Thu, 28 Jan 2021

14:00 - 15:00
Virtual

T\bar{T} Deformations

Mateo Galdeano Solans
(Mathematical Institute (University of Oxford))
Further Information

Contact organisers for access to meeting (Carmen Jorge-Diaz, Connor Behan or Sujay Nair)

Thu, 28 Jan 2021
14:00
Virtual

Spontaneous periodic orbits in the Navier-Stokes flow via computer-assisted proofs

Jean-Philippe Lessard
(McGill University)
Abstract
In this talk, we introduce a general method to obtain constructive proofs of existence of periodic orbits in the forced autonomous Navier-Stokes equations on the three-torus. After introducing a zero finding problem posed on a Banach space of geometrically decaying Fourier coefficients, a Newton-Kantorovich theorem is applied to obtain the (computer-assisted) proofs of existence. As applications, we present proofs of existence of spontaneous periodic orbits in the Navier-Stokes equations with Taylor-Green forcing.

 

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact @email.

Thu, 28 Jan 2021

12:00 - 13:00
Virtual

Rheology of dense granular suspensions

Elisabeth Guazzelli
(MSC CNRS Université de Paris)
Further Information

We continue this term with our flagship seminars given by notable scientists on topics that are relevant to Industrial and Applied Mathematics. 

Note the new time of 12:00-13:00 on Thursdays.

This will give an opportunity for the entire community to attend and for speakers with childcare responsibilities to present.

Abstract

Suspensions are composed of mixtures of particles and fluid and are
ubiquitous in industrial processes (e.g. waste disposal, concrete,
drilling muds, metalworking chip transport, and food processing) and in
natural phenomena (e.g. flows of slurries, debris, and lava). The
present talk focusses on the rheology of concentrated suspensions of
non-colloidal particles. It addresses the classical shear viscosity of
suspensions but also non-Newtonian behaviour such as normal-stress
differences and shear-induced migration. The rheology of dense
suspensions can be tackled via a diversity of approaches that are
introduced. In particular, the rheometry of suspensions can be
undertaken at an imposed volume fraction but also at imposed values of
particle normal stress, which is particularly well suited to yield
examination of the rheology close to the jamming transition. The
influences of particle roughness and shape are discussed.

Wed, 27 Jan 2021

16:00 - 17:00

Multiplicative gerbes and H^4(BG)

Christoph Weis
(Oxford)
Abstract

The cohomology of a manifold classifies geometric structures over it. One instance of this principle is the classification of line bundles via Chern classes. The classifying space BG associated to a (Lie) group G is a simplicial manifold which encodes the group structure. Its cohomology hence classifies geometric objects over G which play well with its multiplication. These are known as characteristic classes, and yield invariants of G-principal bundles.
I will introduce multiplicative gerbes and show how they realise classes in H^4(BG) when G is compact. Along the way, we will meet different versions of Lie group cohomology, smooth 2-groups and a few spectral sequences.

Link: https://teams.microsoft.com/l/meetup-join/19%3ameeting_ZGRiMTM1ZjQtZWNi…

Wed, 27 Jan 2021

10:30 - 12:30
Virtual

Introduction on Nonlinear Wave Equations (Lecture 1 of 4)

Professor Qian Wang
((Oxford University))
Abstract


The course covers the standard material on nonlinear wave equations, including local existence, breakdown criterion, global existence for small data for semi-linear equations, and Strichartz estimate if time allows.  

 

Wed, 27 Jan 2021
10:00
Virtual

Triangulation Complexity of Mapping Tori

Adele Jackson
(Oxford University)
Abstract

A major tool used to understand manifolds is understanding how different measures of complexity relate to one another. One particularly combinatorial measure of the complexity of a 3-manifold M is the minimal number of tetrahedra in a simplicial complex homeomorphic to M, called the triangulation complexity of M. A natural question is whether we can relate this with more geometric measures of the complexity of a manifold, especially understanding these relationships as combinatorial complexity grows.

In the case when the manifold fibres over the circle, a recent theorem of Marc Lackenby and Jessica Purcell gives both an upper and lower bound on the triangulation complexity in terms of a geometric invariant of the gluing map (its translation length in the triangulation graph). We will discuss this result as well as a new result concerning what happens when we alter the gluing map by a Dehn twist.

Tue, 26 Jan 2021
16:00
Virtual

Symbol Alphabets from Plabic Graphs

Anders Schreiber
(Mathematical Institute (University of Oxford))
Abstract

Symbol alphabets of n-particle amplitudes in N=4 super-Yang-Mills theory are known to contain certain cluster variables of Gr(4,n) as well as certain algebraic functions of cluster variables. In this talk we suggest an algorithm for computing these symbol alphabets from plabic graphs by solving matrix equations of the form C.Z = 0 to associate functions on Gr(m,n) to parameterizations of certain cells of Gr_+ (k,n) indexed by plabic graphs. For m=4 and n=8 we show that this association precisely reproduces the 18 algebraic symbol letters of the two-loop NMHV eight-point amplitude from four plabic graphs. We further show that it is possible to obtain all rational symbol letters (in fact all cluster variables) by solving C.Z = 0 if one allows C to be an arbitrary cluster parameterization of the top cell of Gr_+ (n-4,n).

Tue, 26 Jan 2021
15:30
Virtual

Random friends walking on random graphs

Noga Alon
(Princeton)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

Let $X$ and $Y$ be two $n$-vertex graphs. Identify the vertices of $Y$ with $n$ people, any two of whom are either friends or strangers (according to the edges and non-edges in $Y$), and imagine that these people are standing one at each vertex of $X$. At each point in time, two friends standing at adjacent vertices of $X$ may swap places, but two strangers may not. The friends-and-strangers graph $FS(X,Y)$ has as its vertex set the collection of all configurations of people standing on the vertices of $X$, where two configurations are adjacent when they are related via a single friendly swap. This provides a common generalization for the famous 15-puzzle, transposition Cayley graphs of symmetric groups, and early work of Wilson and of Stanley.
I will describe several recent results and open problems addressing the extremal and typical aspects of the notion, focusing on the result that the threshold probability for connectedness of $FS(X,Y)$ for two independent binomial random graphs $X$ and $Y$ in $G(n,p)$ is $p=p(n)=n-1/2+o(1)$.
Joint work with Colin Defant and Noah Kravitz.

Tue, 26 Jan 2021

15:30 - 16:30
Virtual

Secular coefficients and the holomorphic multiplicative chaos

Joseph Najnudel
(University of Bristol)
Abstract

We study the coefficients of the characteristic polynomial (also called secular coefficients) of random unitary matrices drawn from the Circular Beta Ensemble (i.e. the joint probability density of the eigenvalues is proportional to the product of the power beta of the mutual distances between the points). We study the behavior of the secular coefficients when the degree of the coefficient and the dimension of the matrix tend to infinity. The order of magnitude of this coefficient depends on the value of the parameter beta, in particular, for beta = 2, we show that the middle coefficient of the characteristic polynomial of the Circular Unitary Ensemble converges to zero in probability when the dimension goes to infinity, which solves an open problem of Diaconis and Gamburd. We also find a limiting distribution for some renormalized coefficients in the case where beta > 4. In order to prove our results, we introduce a holomorphic version of the Gaussian Multiplicative Chaos, and we also make a connection with random permutations following the Ewens measure.

Tue, 26 Jan 2021
14:30
Virtual

The construction of stable and div-free finite elements via Stokes complexes

Duygu Sap
(Department of Engineering Science University of Oxford)
Abstract
In this talk, we describe the methodology for constructing a divergence-free and stable pair of finite element spaces for the Stokes problem on cubical meshes of arbitrary dimension. We use the Stokes complex as a guiding tool. We state and exemplify the general procedure for deriving a divergence-free and stable finite element discretization from a Stokes complex. However, we develop a new strategy to prove the necessary inf-sup stability condition due to the lack of a Fortin operator. In particular, we first derive a local inf-sup condition with imposed boundary conditions and then translate this result to the global level by exploiting the element's degrees of freedom. Furthermore, we derive reduced finite elements with less global degrees of freedom. We show that the optimal order of convergence is achieved via both the original and reduced finite elements for the velocity approximation, and the pressure approximation is of optimal order when the reduced finite elements are used.
 
Ref. Stokes elements on cubic meshes yielding divergence-free approximations, M. Neilan and D. Sap, Calcolo, 53(3):263-283, 2016. 
 
--

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact @email.

 

Tue, 26 Jan 2021

14:15 - 15:15
Virtual

Representation theory of wreath products

Reuben Green
(Pembroke College)
Abstract

The wreath product of a finite group, or more generally an algebra, with a symmetric group is a familiar and important construction in representation theory and other areas of Mathematics. I shall present some highlights from my work on the representation theory of wreath products. These will include both structural properties (for example, that the wreath product of a cellular algebra with a symmetric group is again a cellular algebra) and cohomological ones (one 
particular point of interest being a generalisation of the result of Hemmer and Nakano on filtration multiplicities to the wreath product of two symmetric groups). I will also give an outline of some potential applications of this and related theory to important open  problems in algebraic combinatorics.

Tue, 26 Jan 2021
14:00
Virtual

A solution to Erdős and Hajnal's odd cycle problem

Richard Montgomery
(Birmingham)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

I will discuss how to construct cycles of many different lengths in graphs, in particular answering the following two problems on odd and even cycles. Erdős and Hajnal asked in 1981 whether the sum of the reciprocals of the odd cycle lengths in a graph diverges as the chromatic number increases, while, in 1984, Erdős asked whether there is a constant $C$ such that every graph with average degree at least $C$ contains a cycle whose length is a power of 2.

Tue, 26 Jan 2021
14:00
Virtual

Preconditioners for computing multiple solutions in three-dimensional fluid topology optimisation

John Papadopoulos
(Mathematical Institute)
Abstract

Topology optimisation finds the optimal material distribution of a fluid or solid in a domain, subject to PDE, volume, and box constraints. The optimisation problem is normally nonconvex and can support multiple local minima. In recent work [1], the authors developed an algorithm for systematically discovering multiple minima of two-dimensional problems through a combination of barrier methods, active-set strategies, and deflation. The bottleneck of the algorithm is solving the Newton systems that arise. In this talk, we will present preconditioning methods for these linear systems as they occur in the topology optimization of Stokes flow. The strategies involve a mix of block preconditioning and specialized multigrid relaxation schemes that reduce the computational work required and allow the application of the algorithm to three-dimensional problems.

[1] “Computing multiple solutions of topology optimization problems”, I. P. A. Papadopoulos, P. E. Farrell, T. M. Surowiec, 2020, https://arxiv.org/abs/2004.11797

 

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact @email.

Tue, 26 Jan 2021

14:00 - 15:00
Virtual

Core-Periphery Structure in Directed Networks

Gesine Reinert
(University of Oxford)
Abstract

Empirical networks often exhibit different meso-scale structures, such as community and core-periphery structure. Core-periphery typically consists of a well-connected core, and a periphery that is well-connected to the core but sparsely connected internally. Most core-periphery studies focus on undirected networks. In this talk we discuss  a generalisation of core-periphery to directed networks which  yields a family of core-periphery blockmodel formulations in which, contrary to many existing approaches, core and periphery sets are edge-direction dependent. Then we shall  focus on a particular structure consisting of two core sets and two periphery sets, and we introduce  two measures to assess the statistical significance and quality of this  structure in empirical data, where one often has no ground truth. The idea will be illustrated on three empirical networks --  faculty hiring, a world trade data-set, and political blogs.

 

This is based on joint work with Andrew Elliott, Angus Chiu, Marya Bazzi and Mihai Cucuringu, available at https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.2019.0783

Tue, 26 Jan 2021
12:45
Virtual

Estimation for diffusion processes constrained by a polytope

Sheng Wang
(Mathematical Insitute, Oxford)
Abstract

Diffusion processes are widely used to model the evolution of random values over time. In many applications, the diffusion process is constrained to a finite domain. We consider the estimation problem of a diffusion process constrained by a polytope, i.e. intersection of finitely many (hyper-)planes, given a discretely observed time series data. Since the boundary behaviours of a diffusion process are characterised by its drift and diffusion functions, we derive sufficient conditions on the drift and diffusion functions for the nonattainablity of a polytope. We use deep learning to estimate the drift and diffusion, and ensure that their constraints are satisfied throughout the training.

Tue, 26 Jan 2021
12:00

New results for gravitational binary dynamics from QFT amplitudes

Mao Zeng
(Oxford (Theoretical Physics))
Abstract

Precision predictions for binary mergers are essential for the nascent field of gravitational wave astronomy. The initial inspiral part can be treated perturbatively. We present results for the post-Minkowskian expansion of conservative binary dynamics, previously available only at the 2nd order for several decades, at the 3rd and 4th orders in the expansion. Our calculations are based on quantum field theory and use powerful methods developed in the modern scattering amplitudes program, as well as loop integration techniques developed for precision collider physics. Furthermore, we take initial steps in calculating radiative binary dynamics and obtain analytically the total radiated energy in hyperbolic black hole scattering, at the lowest order in G but all orders in velocity.

Mon, 25 Jan 2021

16:00 - 17:00
Virtual

Local-to-global principles and a theorem of Siegel

Håvard Damm-Johnsen
Abstract

Local-to-global principles are a key tool in arithmetic geometry. Through a theorem of Siegel on representations of totally positive numbers as sums of squares in number fields we give a concrete introduction to the Hasse principle, and briefly talk about other local-to-global principles. No prerequisites from algebraic number theory are assumed, although some familiarity is helpful for context.

Mon, 25 Jan 2021

16:00 - 17:00

Open markets

DONGHAN KIM
(Columbia University)
Abstract

An open market is a subset of a larger equity market, composed of a certain fixed number of top‐capitalization stocks. Though the number of stocks in the open market is fixed, their composition changes over time, as each company's rank by market capitalization fluctuates. When one is allowed to invest also in a money market, an open market resembles the entire “closed” equity market in the sense that the market viability (lack of arbitrage) is equivalent to the existence of a numéraire portfolio (which cannot be outperformed). When access to the money market is prohibited, the class of portfolios shrinks significantly in open markets; in such a setting, we discuss how to construct functionally generated stock portfolios and the concept of the universal portfolio.

This talk is based on joint work with Ioannis Karatzas.

-------------------------------------------------------------------------------------------------

Mon, 25 Jan 2021

15:45 - 16:45
Virtual

The Friedl-Tillmann polytope

Dawid Kielak
(University of Oxford)
Abstract

I will introduce the Friedl-Tillmann polytope for one-relator groups, and then discuss how it can be generalised to the Friedl-Lück polytope, how it connects to the Thurston polytope, and how we can view it as a convenient source of intuition and ideas.

Mon, 25 Jan 2021
14:15
Virtual

Equivariant Lagrangian Floer homology and Extended Field theory

Guillem Cazassus
(Oxford)
Abstract
Given a compact Lie group G and a Hamiltonian G-manifold endowed with a pair of G-Lagrangians, we provide a construction for their equivariant Floer homology. Such groups have been defined previously by Hendricks, Lipshitz and Sarkar, and also by Daemi and Fukaya. A similar construction appeared independently in the work of Kim, Lau and Zheng. We will discuss an attempt to use such groups to construct topological field theories: these should be seen as 3-morphism spaces in the Hamiltonian 3-category, which should serve as a target for a field theory corresponding to Donaldson polynomials.
Mon, 25 Jan 2021
12:45
Virtual

Moduli Space Holography and the Finiteness of Flux Vacua

Thomas Grimm
(Utrecht)
Abstract

In this talk I describe a holographic perspective to study field spaces that arise in string compactifications. The constructions are motivated by a general description of the asymptotic, near-boundary regions in complex structure moduli spaces of Calabi-Yau manifolds using Hodge theory. For real two-dimensional field spaces, I introduce an auxiliary bulk theory and describe aspects of an associated sl(2) boundary theory. The classical bulk reconstruction is provided by the sl(2)-orbit theorem, which is a famous and general result in Hodge theory. I then apply this correspondence to the flux landscape of Calabi-Yau fourfold compactifications and discuss how this allows us to prove that the number of self-dual flux vacua is finite. I will point out how the finiteness result for supersymmetric fluxes relates to the Hodge conjecture.

Fri, 22 Jan 2021

14:00 - 15:00
Virtual

Paradigms for data-driven discovery and control in biological systems

Professor Nathan Kutz
(Dept of Applied Mathematics University of Washington)
Abstract

A major challenge in the study of biological systems is that of model discovery: turning data into reduced order models that are not just predictive, but provide insight into the nature of the underlying system that generated the data. We introduce a number of data-driven strategies for discovering nonlinear multiscale dynamical systems and their embeddings from data.  Such data-driven methods can be used in the biological sciences where rich data streams are affording new possibilities for the understanding and characterization of complex, networked systems.  In neuroscience, for instance, the integration of these various concepts (reduced-order modeling, equation-free, machine learning, sparsity, networks, multi-scale physics and adaptive control) are critical to formulating successful modeling strategies that perhaps can say something meaningful about experiments.   These methods will be demonstrated on a number of neural systems.  I will also highlight how such methods can be used to quantify cognitive and decision-making deficits arising from neurodegenerative diseases and/or traumatic brain injuries (concussions).

Thu, 21 Jan 2021

16:00 - 17:00

The statistics of firm growth rates

JOSE MORAN
(University of Oxford)
Abstract


Whether one uses the sales, the number of employees or any other proxy for firm "size", it is well known that this quantity is power-law distributed, with important consequences to aggregate macroeconomic fluctuations. The Gibrat model explained this by proposing that firms grow multiplicatively, and much work has been done to study the statistics of their growth rates. Inspired by past work in the statistics of financial returns, I present a new framework to study these growth rates. In particular, I will show that they follow approximately Gaussian statistics, provided their heteroskedastic nature is taken into account. I will also elucidate the size/volatility scaling relation, and show that volatility may have a strong sectoral dependence. Finally, I will show how this framework can be used to study intra-firm and supply chain dynamics.

Joint work with JP Bouchaud and Angelo Secchi.

Thu, 21 Jan 2021
14:00
Virtual

Domain specific languages for convex optimization

Stephen Boyd
(Stanford University)
Abstract

Specialized languages for describing convex optimization problems, and associated parsers that automatically transform them to canonical form, have greatly increased the use of convex optimization in applications. These systems allow users to rapidly prototype applications based on solving convex optimization problems, as well as generate code suitable for embedded applications. In this talk I will describe the general methods used in such systems.

 

--

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact @email.

Thu, 21 Jan 2021

12:00 - 13:00
Virtual

Numerical analysis of a topology optimization problem for Stokes flow / Estimates and regularity for a class of augmented Hessian equations, and a fully nonlinear generalisation of the Yamabe problem

Ioannis Papadopoulos / Jonah Duncan
(University of Oxford)
Abstract

A topology optimization problem for Stokes flow finds the optimal material distribution of a fluid in Stokes flow that minimizes the fluid’s power dissipation under a volume constraint. In 2003, T. Borrvall and J. Petersson [1] formulated a nonconvex optimization problem for this objective. They proved the existence of minimizers in the infinite-dimensional setting and showed that a suitably chosen finite element method will converge in a weak(-*) sense to an unspecified solution. In this talk, we will extend and refine their numerical analysis. In particular, we will show that there exist finite element functions, satisfying the necessary first-order conditions of optimality, that converge strongly to each isolated local minimizer of the problem.

/

Fully nonlinear PDEs involving the eigenvalues of matrix-valued differential operators (such as the Hessian) have been the subject of intensive study over the last few decades, since the seminal work of Caffarelli, Kohn, Nirenberg and Spruck. In this talk I will discuss some recent joint work with Luc Nguyen on the regularity theory for a large class of these equations, with a particular emphasis on a special case known as the sigma_k-Yamabe equation, which arises in conformal geometry. 

 

[1] T. Borrvall, J. Petersson, Topology optimization of fluids in Stokes flow, International Journal for Numerical Methods in Fluids 41 (1) (2003) 77–107. doi:10.1002/fld.426.