Fri, 27 Nov 2020

14:00 - 15:00
Virtual

Plant puzzle cell shape is an adaptation to a developmental constraint based on mechanical stress and isotropic growth

Dr Richard Smith
(John Innes Centre Norwich Research Park)
Abstract

The puzzle-shaped cells that appear in the epidermis of many plants are a striking example of a complex cell shape. Since shape in an organism is often thought to be closely related to its function, it suggests that these unusual shapes must have some functional benefit to the plant. We 
propose that the creation of these complex shapes is an effective strategy to reduce mechanical stress in the cell wall. Although the 
formation of these shapes requires highly anisotropic and non-uniform growth at the sub-cellular level, it appears to be triggered by 
isotropic growth at the organ level. Analysis of cell shape over multiple species is consistent with the idea that the puzzle is in 
response to a developmental constraint, and that the mechanism is like to be conserved among higher plants.

Fri, 27 Nov 2020

11:45 - 13:15
Virtual

InFoMM CDT Group Meeting

Giuseppe Ughi, James Morrill, Rahil Sachak-Patwa, Nicolas Boulle
(Mathematical Institute)
Thu, 26 Nov 2020

16:00 - 17:00
Virtual

On the Happy Marriage of Kernel Methods and Deep Learning

Julien Mairal
(Inria Grenoble)
Further Information

datasig.ox.ac.uk/events

Abstract

In this talk, we present simple ideas to combine nonparametric approaches based on positive definite kernels with deep learning models. There are many good reasons for bridging these two worlds. On the one hand, we want to provide regularization mechanisms and a geometric interpretation to deep learning models, as well as a functional space that allows to study their theoretical properties (eg invariance and stability). On the other hand, we want to bring more adaptivity and scalability to traditional kernel methods, which are crucially lacking. We will start this presentation by introducing models to represent graph data, then move to biological sequences, and images, showing that our hybrid models can achieves state-of-the-art results for many predictive tasks, especially when large amounts of annotated data are not available. This presentation is based on joint works with Alberto Bietti, Dexiong Chen, and Laurent Jacob.

Thu, 26 Nov 2020

16:00 - 17:00

Regularity and time discretization of extended mean-field control problems: a McKean-Vlasov FBSDE approach

WOLFGANG STOCKINGER
(University of Oxford)
Abstract

We analyze the regularity of solutions and discrete-time approximations of extended mean-field control (extended MFC) problems, which seek optimal control of McKean-Vlasov dynamics with coefficients involving mean-field interactions both on the  state and actions, and where objectives are optimized over
open-loop strategies.

We show for a large class of extended MFC problems that the unique optimal open-loop control is 1/2-Hölder continuous in time. Based on the regularity of the solution, we prove that the value functions of such extended MFC problems can be approximated by those with piecewise constant controls and discrete-time state processes arising from Euler-Maruyama time stepping up to an order 1/2 error, which is optimal in our setting. Further, we show that any epsilon-optimal control of these discrete-time problems
converge to the optimal control of the original problems.

To establish the time regularity of optimal controls and the convergence of time discretizations, we extend the canonical path regularity results to general coupled 
McKean-Vlasov forward-backward stochastic differential equations, which are of independent interest.

This is based on join work joint work with C. Reisinger and Y. Zhang.

Thu, 26 Nov 2020

16:00 - 17:00
Virtual

Convective instabilities in ternary alloy solidification

Daniel M. Anderson
(George Mason University)
Further Information

We return this term to our usual flagship seminars given by notable scientists on topics that are relevant to Industrial and Applied Mathematics. 

Abstract

Daniel M. Anderson

Department of Mathematical Sciences, George Mason University

Applied and Computational Mathematics Division, NIST

Binary and multicomponent alloy solidification occurs in many industrial materials science applications as well as in geophysical systems such as sea ice. These processes involve heat and mass transfer coupled with phase transformation dynamics and can involve the formation of mixed phase regions known as mushy layers.  The understanding of transport mechanisms within mushy layers has important consequences for how these regions interact with the surrounding liquid and solid regions.  Through linear stability analyses and numerical calculations of mathematical models, convective instabilities that occur in solidifying ternary alloys will be explored.  Novel fluid dynamical phenomena that are predicted for these systems will be discussed.

Thu, 26 Nov 2020
14:00
Virtual

Why should we care about Steklov eigenproblems?

Nilima Nigam
(Simon Fraser University)
Abstract

Steklov eigenproblems and their variants (where the spectral parameter appears in the boundary condition) arise in a range of useful applications. For instance, understanding some properties of the mixed Steklov-Neumann eigenfunctions tells us why we shouldn't use coffee cups for expensive brandy. 

In this talk I'll present a high-accuracy discretization strategy for computing Steklov eigenpairs. The strategy can be used to study questions in spectral geometry, spectral optimization and to the solution of elliptic boundary value problems with Robin boundary conditions.

--

A link for the talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact @email.

 

Wed, 25 Nov 2020

17:00 - 18:00
Virtual

Geometric invariant theory for graded unipotent groups

Yikun Qiao
Abstract

A graded unipotent group U is a unipotent group with a 1PS of automorphisms C^* -- > Aut(U), such that the this 1PS acts on the Lie(U) with all weights positive. Let \hat U be the semi-direct product of U with this 1PS. Let \hat U act linearly on (X,L), a projective variety with a very ample line bundle. With the condition `semistability coincides with stability', and after suitable twist of rational characters, the \hat U-linearisation has a projective geometric quotient, and the invariants are finitely generated. This is a result from \emph{Geometric invariant theory for graded unipotent groups and applications} by G Bérczi, B Doran, T Hawes, F Kirwan, 2018.

Link: https://teams.microsoft.com/l/meetup-join/19%3ameeting_NzU0ODY5MTUtMzUz…

Wed, 25 Nov 2020
10:00
Virtual

Veering Triangulations, the Teichmüller Polynomial and the Alexander Polynomial

Anna Parlak
(University of Warwick)
Abstract

Veering triangulations are a special class of ideal triangulations with a rather mysterious combinatorial definition. Their importance follows from a deep connection with pseudo-Anosov flows on 3-manifolds. Recently Landry, Minsky and Taylor introduced a polynomial invariant of veering triangulations called the taut polynomial. It is a generalisation of an older invariant, the Teichmüller polynomial, defined by McMullen in 2002.

The aim of my talk is to demonstrate that veering triangulations provide a convenient setup for computations. More precisely, I will use fairly easy arguments to obtain a fairly strong statement which generalises the results of McMullen relating the Teichmüller polynomial to the Alexander polynomial.

I will not assume any prior knowledge on the Alexander polynomial, the Teichmüller polynomial or veering triangulations.

Tue, 24 Nov 2020
15:30
Virtual

Sparse universal graphs for planarity

Gwenaël Joret
(Universite Libre de Bruxelles)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

This talk will focus on the following two related problems:
    (1) What is the minimum number of edges in a graph containing all $n$-vertex planar graphs as subgraphs? A simple construction of Babai, Erdos, Chung, Graham, and Spencer (1982) has $O(n^{3/2})$ edges, which is the best known upper bound.
    (2) What is the minimum number of *vertices* in a graph containing all $n$-vertex planar graphs as *induced* subgraphs? Here steady progress has been achieved over the years, culminating in a $O(n^{4/3})$ bound due to Bonamy, Gavoille, and Pilipczuk (2019).
    As it turns out, a bound of $n^{1+o(1)}$ can be achieved for each of these two problems. The two constructions are somewhat different but are based on a common technique. In this talk I will first give a gentle introduction to the area and then sketch these constructions. The talk is based on joint works with Vida Dujmović, Louis Esperet, Cyril Gavoille, Piotr Micek, and Pat Morin.

Tue, 24 Nov 2020

15:30 - 16:30
Virtual

Asymptotics for averages over classical orthogonal ensembles

Tom Claeys
(Universite catholique de louvain)
Further Information

This seminar will be held via zoom. Meeting link will be sent to members of our mailing list (https://lists.maths.ox.ac.uk/mailman/listinfo/random-matrix-theory-anno…) in our weekly announcement on Monday.

Abstract

Averages of multiplicative eigenvalue statistics of Haar distributed unitary matrices are Toeplitz determinants, and asymptotics for these determinants are now well understood for large classes of symbols, including symbols with gaps and (merging) Fisher-Hartwig singularities. Similar averages for Haar distributed orthogonal matrices are Toeplitz+Hankel determinants. Some asymptotic results for these determinants are known, but not in the same generality as for Toeplitz determinants. I will explain how one can systematically deduce asymptotics for averages in the orthogonal group from those in the unitary group, using a transformation formula and asymptotics for certain orthogonal polynomials on the unit circle, and I will show that this procedure leads to asymptotic results for symbols with gaps or (merging) Fisher-Hartwig singularities. The talk will be based on joint work with Gabriel Glesner, Alexander Minakov and Meng Yang.

Tue, 24 Nov 2020
14:30
Virtual

“Chiral” field theory, fishnets and integrable spin chains

Stefano Negro
(New York University)
Further Information

Please contact Erik Panzer or Ömer Gürdoğan to be added to the mailing list and receive joining instructions to the online seminar.

Abstract

In this talk I will review the work that has been done by me, N. Gromov, V. Kazakov, G. Korchemsky and G. Sizov on the analysis of fishnet Feynman graphs in a particular scaling limit of $\mathcal N=4$ SYM, a theory dubbed $\chi$FT$_4$. After introducing said theory, in which the Feynman graphs take a very simple fishnet form — in the planar limit — I will review how to exploit integrable techniques to compute these graphs and, consequently, extract the anomalous dimensions of a simple class of operators.

Tue, 24 Nov 2020

14:15 - 15:15
Virtual

Minkowski's theorem, and a question of Serre

Michael Collins
(Oxford University)
Abstract

Let $p$ be a prime. Minkowski (1887) gave a bound for the order of a finite $p$-subgroup of the linear group $\mathsf{GL}(n,\mathbf Z)$ as a function of $n$, and this necessarily holds for $p$-subgroups of $\mathsf{GL}(n,\mathbf Q)$ also. A few years ago, Serre asked me whether some analogous result might be obtained for subgroups of $\mathsf{GL}(n,\mathbf C)$ using the methods I employed to obtain optimal bounds for Jordan's theorem.

Bounds can be so obtained and I will explain how but, while Minkowski's bound is achieved, no linear bound (as Serre initially suggested) can be achieved. I will discuss progress on this problem and the issues that arise in seeking an ideal form for the solution.

Tue, 24 Nov 2020

14:00 - 15:00
Virtual

No higher-order effects without non-linearity

Leonie Neuhäuser
(RWTH Aachen University)
Abstract

Multibody interactions can reveal higher-order dynamical effects that are not captured by traditional two-body network models. We derive and analyze models for consensus dynamics on hypergraphs, where nodes interact in groups rather than in pairs. Our work reveals that multibody dynamical effects that go beyond rescaled pairwise interactions can appear only if the interaction function is nonlinear, regardless of the underlying multibody structure. As a practical application, we introduce a specific nonlinear function to model three-body consensus, which incorporates reinforcing group effects such as peer pressure. Unlike consensus processes on networks, we find that the resulting dynamics can cause shifts away from the average system state. The nature of these shifts depends on a complex interplay between the distribution of the initial states, the underlying structure, and the form of the interaction function. By considering modular hypergraphs, we discover state-dependent, asymmetric dynamics between polarized clusters where multibody interactions make one cluster dominate the other.

Building on these results, we generalise the model allowing for interactions within hyper edges of any cardinality and explore in detail the role of involvement and stubbornness on polarisation.

Tue, 24 Nov 2020
14:00
Virtual

Matching Random Points

Alexander Holroyd
(Bristol)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

What is fairness, and to what extent is it practically achievable? I'll talk about a simple mathematical model under which one might hope to understand such questions. Red and blue points occur as independent homogeneous Poisson processes of equal intensity in Euclidean space, and we try to match them to each other. We would like to minimize the sum of a some function (say, a power, $\gamma$) of the distances between matched pairs. This does not make sense, because the sum is infinite, so instead we satisfy ourselves with minimizing *locally*. If the points are interpreted as agents who would like to be matched as close as possible, the parameter $\gamma$ encodes a measure of fairness - large $\gamma$ means that we try to avoid occasional very bad outcomes (long edges), even if that means inconvenience to others - small $\gamma$ means everyone is in it for themselves.
    In dimension 1 we have a reasonably complete picture, with a phase transition at $\gamma=1$. For $\gamma<1$ there is a unique minimal matching, while for $\gamma>1$ there are multiple matchings but no stationary solution. In higher dimensions, even existence is not clear in all cases.

Tue, 24 Nov 2020
12:00
Virtual

Symmetries and Master Ward Identity in perturbative Algebraic QFT

Kasia Reijzner
(University of York)
Abstract

In this talk I will explain how theories with local symmetries are treated in perturbative Algebraic Quantum Field Theory (pAQFT). The main mathematical tool used here is the Batalin Vilkovisky (BV) formalism. I will show how the perturbative Master Ward Identity can be applied in this formalism to make sense of the renormalised Quantum Master Equation. I will also comment on perspectives for a non-perturbative formulation.

 

Mon, 23 Nov 2020

16:00 - 17:00
Virtual

Local-global principles for norm equations

André Macedo
Abstract

Given an extension L/K of number fields, we say that the Hasse norm principle (HNP) holds if every non-zero element of K which is a norm everywhere locally is in fact a global norm from L. If L/K is cyclic, the original Hasse norm theorem states that the HNP holds. More generally, there is a cohomological description (due to Tate) of the obstruction to the HNP for Galois extensions. In this talk, I will present work (joint with Rachel Newton) developing explicit methods to study this principle for non-Galois extensions. As a key application, I will describe how these methods can be used to characterize the HNP for extensions whose normal closure has Galois group A_n or S_n. I will additionally discuss some recent generalizations of these methods to study the Hasse principle and weak approximation for multinorm equations as well as consequences in the statistics of these local-global principles.

 

Mon, 23 Nov 2020

16:00 - 17:00

Excursion Risk

RENYUAN XU
(University of Oxford)
Abstract

The risk and return profiles of a broad class of dynamic trading strategies, including pairs trading and other statistical arbitrage strategies, may be characterized in terms of excursions of the market price of a portfolio away from a reference level. We propose a mathematical framework for the risk analysis of such strategies, based on a description in terms of price excursions, first in a pathwise setting, without probabilistic assumptions, then in a Markovian setting.

 

We introduce the notion of δ-excursion, defined as a path which deviates by δ from a reference level before returning to this level. We show that every continuous path has a unique decomposition into δ-excursions, which is useful for scenario analysis of dynamic trading strategies, leading to simple expressions for the number of trades, realized profit, maximum loss and drawdown. As δ is decreased to zero, properties of this decomposition relate to the local time of the path. When the underlying asset follows a Markov process, we combine these results with Ito's excursion theory to obtain a tractable decomposition of the process as a concatenation of independent δ-excursions, whose distribution is described in terms of Ito's excursion measure. We provide analytical results for linear diffusions and give new examples of stochastic processes for flexible and tractable modeling of excursions. Finally, we describe a non-parametric scenario simulation method for generating paths whose excursion properties match those observed in empirical data.

Joint work with Anna Ananova and Rama Cont: https://ssrn.com/abstract=3723980

 

 

Mon, 23 Nov 2020
15:45
Virtual

Constructing examples of infinity operads: a study of normalised cacti

Luciana Bonatto
(University of Oxford)
Abstract

Operads are tools to encode operations satisfying algebro-homotopic relations. They have proved to be extremely useful tools, for instance for detecting spaces that are iterated loop spaces. However, in many natural examples, composition of operations is only associative up to homotopy and operads are too strict to captured these phenomena. This leads to the notion of infinity operads. While they are a well-established tool, there are few examples of infinity operads in the literature that are not the nerve of an actual operad. I will introduce new topological operad of bracketed trees that can be used to identify and construct natural examples of infinity operads. The key example for this talk will be the normalised cacti model for genus 0 surfaces.

Glueing surfaces along their boundaries defines composition laws that have been used to construct topological field theories and to compute the homology of the moduli space of Riemann surfaces. Normalised cacti are a graphical model for the moduli space of genus 0 oriented surfaces. They are endowed with a composition that corresponds to glueing surfaces along their boundaries, but this composition is not associative. By using the operad of bracketed trees, I will show that this operation is associative up to all higher homotopies and hence that normalised cacti form an infinity operad.

Mon, 23 Nov 2020
14:15
Virtual

Complex Links and Algebraic Multiplicities

Vidit Nanda
(Oxford)
Abstract

Given a nested pair X and Y of complex projective varieties, there is a single positive integer e which measures the singularity type of X inside Y. This is called the Hilbert-Samuel multiplicity of Y along X, and it appears in the formulations of several standard intersection-theoretic constructions including Segre classes, Euler obstructions, and various other multiplicities. The standard method for computing e requires knowledge of the equations which define X and Y, followed by a (super-exponential) Grobner basis computation. In this talk we will connect the HS multiplicity to complex links, which are fundamental invariants of (complex analytic) Whitney stratified spaces. Thanks to this connection, the enormous computational burden of extracting e from polynomial equations reduces to a simple exercise in clustering point clouds. In fact, one doesn't even need the polynomials which define X and Y: it suffices to work with dense point samples. This is joint work with Martin Helmer.

Mon, 23 Nov 2020
12:45
Virtual

An optical theorem for CFT and high-energy string scattering in AdS at one loop

Tobias Hansen
(University of Oxford)
Abstract

In this talk I will present an optical theorem for perturbative CFTs, which directly computes the double discontinuity of CFT correlators in terms of the discontinuities of correlators at lower loops or lower points, in analogy to the optical theoreom for scattering amplitudes. I will then discuss the application of this theorem to high-energy scattering of type IIb strings in AdS at one loop and finite 't Hooft coupling. Tidal excitations are taken into account and shown to be efficiently described by an AdS vertex function. The result is related to the 1987 flat space result of Amati, Ciafaloni and Veneziano via the flat space limit in impact parameter space.

Fri, 20 Nov 2020
16:00
Virtual

Polarizations and Symmetries of T[M] theories

Du Pei
(Harvard)
Abstract

I will lead an informal discussion centered on discrete data that need to be specified when reducing 6d relative theories on an internal manifold M and how they determine symmetries of the resulting theory T[M].

Fri, 20 Nov 2020

16:00 - 17:00
Virtual

Using random matrix theory in numerical linear algebra: Fast and stable randomized low-rank matrix approximation

Yuji Nakatsukasa
(University of Oxford)
Abstract

In this new session a speaker tells us about how their area of mathematics can be used in different applications.

In this talk, Yuji Nakatsukasa tells us about how random matrix theory can be used in numerical linear algebra. 

 

Abstract

Randomized SVD is a topic in numerical linear algebra that draws heavily from random matrix theory. It has become an extremely successful approach for efficiently computing a low-rank approximation of matrices. In particular the paper by Halko, Martinsson, and Tropp (SIREV 2011) contains extensive analysis, and has made it a very popular method. The classical Nystrom method is much faster, but only applicable to positive semidefinite matrices. This work studies a generalization of Nystrom's method applicable to general matrices, and shows that (i) it has near-optimal approximation quality comparable to competing methods, (ii) the computational cost is the near-optimal O(mnlog n+r^3) for a rank-r approximation of dense mxn matrices, and (iii) crucially, it can be implemented in a numerically stable fashion despite the presence of an ill-conditioned pseudoinverse. Numerical experiments illustrate that generalized Nystrom can significantly outperform state-of-the-art methods. In this talk I will highlight the crucial role played by a classical result in random matrix theory, namely the Marchenko-Pastur law, and also briefly mention its other applications in least-squares problems and compressed sensing.

Fri, 20 Nov 2020

15:00 - 16:00
Virtual

Conley-Morse-Forman theory for generalized combinatorial multivector fields on finite topological spaces

Michał Lipiński
(Jagiellonian University)
Abstract

In this talk, I will present the theory of combinatorial multivector fields for finite topological spaces, the main subject of my thesis. The idea of combinatorial vector fields came from Forman and emerged naturally from discrete Morse theory. Lately, Mrozek generalized it to the multivector fields theory for Lefschetz complexes. In our work, we simplified and extended it to the finite topological spaces settings. We developed a combinatorial counterpart for dynamical objects, such as isolated invariant sets, isolating neighbourhoods, Conley index, limit sets, and Morse decomposition. We proved the additivity property of the Conley index and the Morse inequalities. Furthermore, we applied persistence homology to study the evolution and the stability of Morse decomposition. In the last part of the talk, I will show numerical results and potential future directions from a data-analysis perspective. 

Fri, 20 Nov 2020

14:00 - 15:00
Virtual

Real Representations of C_2 - Graded Groups

James Taylor
(University of Oxford)
Abstract

A Real representation of a $C_2$-graded group $H < G$ ($H$ an index two subgroup) is a complex representation of $H$ with an action of the other coset $G \backslash H$ (“odd" elements) satisfying appropriate algebraic coherence conditions. In this talk I will present three such Real representation theories. In these, each odd element acts as an antilinear operator, a bilinear form or a sesquilinear form (equivalently a linear map to $V$ from the conjugate, the dual, or the conjugate dual of $V$) respectively. I will describe how these theories are related, how representations in each are classified, and how the first generalises the classical representation theory of $H$ over the real numbers - retaining much of its beauty and subtlety.