Tue, 12 Nov 2019

14:00 - 15:00
L6

Partition universality of G(n,p) for degenerate graphs

Julia Boettcher
(London School of Economics)
Further Information

The r-​colour size-​Ramsey number of a graph G is the minimum number of edges of a graph H such that any r-​colouring of the edges of H has a monochromatic G-​copy. Random graphs play an important role in the study of size-​Ramsey numbers. Using random graphs, we establish a new bound on the size-​Ramsey number of D-​degenerate graphs with bounded maximum degree.

In the talk I will summarise what is known about size-​Ramsey numbers, explain the connection to random graphs and their so-​called partition universality, and outline which methods we use in our proof.

Based on joint work with Peter Allen.  
 

Tue, 12 Nov 2019
14:00
L5

Computing multiple local minima of topology optimisation problems

Ioannis Papadopoulos
(Oxford)
Abstract

Topology optimisation finds the optimal material distribution of a fluid or solid in a domain, subject to PDE and volume constraints. There are many formulations and we opt for the density approach which results in a PDE, volume and inequality constrained, non-convex, infinite-dimensional optimisation problem without a priori knowledge of a good initial guess. Such problems can exhibit many local minima or even no minima. In practice, heuristics are used to obtain the global minimum, but these can fail even in the simplest of cases. In this talk, we will present an algorithm that solves such problems and systematically discovers as many of these local minima as possible along the way.  

Tue, 12 Nov 2019

12:00 - 13:00
C1

Contagion maps for spreading dynamics and manifold learning

Barbara Mahler
(Mathematical Institute)
Abstract

Spreading processes on geometric networks are often influenced by a network’s underlying spatial structure, and it is insightful to study the extent to which a spreading process follows that structure. In particular, considering a threshold contagion on a network whose nodes are embedded in a manifold and which has both 'geometric edges' that respect the geometry of the underlying manifold, as well as 'non-geometric edges' that are not constrained by the geometry of the underlying manifold, one can ask whether the contagion propagates as a wave front along the underlying geometry, or jumps via long non-geometric edges to remote areas of the network. 
Taylor et al. developed a methodology aimed at determining the spreading behaviour of threshold contagion models on such 'noisy geometric networks' [1]. This methodology is inspired by nonlinear dimensionality reduction and is centred around a so-called 'contagion map' from the network’s nodes to a point cloud in high dimensional space. The structure of this point cloud reflects the spreading behaviour of the contagion. We apply this methodology to a family of noisy-geometric networks that can be construed as being embedded in a torus, and are able to identify a region in the parameter space where the contagion propagates predominantly via wave front propagation. This consolidates contagion map as both a tool for investigating spreading behaviour on spatial network, as well as a manifold learning technique. 
[1] D. Taylor, F. Klimm, H. A. Harrington, M. Kramar, K. Mischaikow, M. A. Porter, and P. J. Mucha. Topological data analysis of contagion maps for examining spreading processes on networks. Nature Communications, 6(7723) (2015)

Tue, 12 Nov 2019

12:00 - 13:15
L4

Dark Matter, Modified Gravity - Or What?

Sabine Hossenfelder
(Frankfurt Institute for Advanced Studies)
Abstract

In this talk I will explain (a) what observations speak for the
hypothesis of dark matter, (b) what observations speak for
the hypothesis of modified gravity, and (c) why it is a mistake
to insist that either hypothesis on its own must
explain all the available data. The right explanation, I will argue,
is instead a suitable combination of dark matter and modified
gravity, which can be realized by the idea that dark matter
has a superfluid phase.

Mon, 11 Nov 2019

16:00 - 17:00
C1

On Serre's Uniformity Conjecture

Jay Swar
(Oxford)
Abstract

Given a prime p and an elliptic curve E (say over Q), one can associate a "mod p Galois representation" of the absolute Galois group of Q by considering the natural action on p-torsion points of E.

In 1972, Serre showed that if the endomorphism ring of E is "minimal", then there exists a prime P(E) such that for all p>P(E), the mod p Galois representation is surjective. This raised an immediate question (now known as Serre's uniformity conjecture) on whether P(E) can be bounded as E ranges over elliptic curves over Q with minimal endomorphism rings.

I'll sketch a proof of this result, the current status of the conjecture, and (time permitting) some extensions of this result (e.g. to abelian varieties with appropriately analogous endomorphism rings).

Mon, 11 Nov 2019

16:00 - 17:00
L4

On some computable quasiconvex multiwell functions

Kewei Zhang
(University of Nottingham)
Abstract

The translation method for constructing quasiconvex lower bound of a given function in the calculus of variations and the notion of compensated convex transforms for tightly approximate functions in Euclidean spaces will be briefly reviewed. By applying the upper compensated convex transform to the finite maximum function we will construct computable quasiconvex functions with finitely many point wells contained in a subspace with rank-one matrices. The complexity for evaluating the constructed quasiconvex functions is O(k log k) with k the number of wells involved. If time allows, some new applications of compensated convexity will be briefly discussed.

Mon, 11 Nov 2019
15:45
L6

The Witt vectors with coefficients

Emanuele Dotto
(University of Warwick)
Abstract

We will introduce the Witt vectors of a ring with coefficients in a bimodule and use them to calculate the components of the Hill-Hopkins-Ravenel norm for cyclic p-groups. This algebraic construction generalizes Hesselholt's Witt vectors for non-commutative rings and Kaledin's polynomial Witt vectors over perfect fields. We will discuss applications to the characteristic polynomial over non-commutative rings and to the Dieudonné determinant. This is all joint work with Krause, Nikolaus and Patchkoria.

Mon, 11 Nov 2019

15:45 - 16:45
L3

On a probabilistic interpretation of the parabolic-parabolic Keller Segel equations

MILICA TOMASEVIC
(Ecole Polytechnique Paris)
Abstract

The Keller Segel model for chemotaxis is a two-dimensional system of parabolic or elliptic PDEs.
Motivated by the study of the fully parabolic model using probabilistic methods, we give rise to a non linear SDE of McKean-Vlasov type with a highly non standard and singular interaction. Indeed, the drift of the equation involves all the past of one dimensional time marginal distributions of the process in a singular way. In terms of approximations by particle systems, an interesting and, to the best of our knowledge, new and challenging difficulty arises: at each time each particle interacts with all the past of the other ones by means of a highly singular space-time kernel.

In this talk, we will analyse the above probabilistic interpretation in $d=1$ and $d=2$.

Mon, 11 Nov 2019

14:15 - 15:15
L3

A decomposition of the Brownian excursion

ANTON WAKOLBINGER
(University of Frankfurt)
Abstract

We discuss a realizationwise correspondence between a Brownian  excursion (conditioned to reach height one) and a triple consisting of

(1) the local time profile of the excursion,

(2) an array of independent time-homogeneous Poisson processes on the real line, and

(3) a fair coin tossing sequence,  where (2) and (3) encode the ordering by height respectively the left-right ordering of the subexcursions.

The three components turn out to be independent,  with (1) giving a time change that is responsible for the time-homogeneity of the Poisson processes.

 By the Ray-Knight theorem, (1) is the excursion of a Feller branching diffusion;  thus the metric structure associated with (2), which generates the so-called lookdown space, can be seen as representing the genealogy underlying the Feller branching diffusion. 

Because of the independence of the three components, up to a time change the distribution of this genealogy does not change under a conditioning on the local time profile. This gives also a natural access to genealogies of continuum populations under competition,  whose population size is modeled e.g. by the Fellerbranching diffusion with a logistic drift.

The lecture is based on joint work with Stephan Gufler and Goetz Kersting.

 

Mon, 11 Nov 2019

14:15 - 15:15
L4

Green's function estimates and the Poisson equation

Ovidiu Munteanu
(University of Connecticut)
Further Information

 

 

Abstract

The Green's function of the Laplace operator has been widely studied in geometric analysis. Manifolds admitting a positive Green's function are called nonparabolic. By Li and Yau, sharp pointwise decay estimates are known for the Green's function on nonparabolic manifolds that have nonnegative Ricci
curvature. The situation is more delicate when curvature is not nonnegative everywhere. While pointwise decay estimates are generally not possible in this
case, we have obtained sharp integral decay estimates for the Green's function on manifolds admitting a Poincare inequality and an appropriate (negative) lower bound on Ricci curvature. This has applications to solving the Poisson equation, and to the study of the structure at infinity of such manifolds.

Mon, 11 Nov 2019
12:45

The Holographic Dual of Strongly γ-deformed N=4 SYM Theory

Nikolay Gromov
(King's College London)
Abstract

We present a first-principles derivation of a weak-strong duality between the four-dimensional fishnet theory in the planar limit and a discretized string-like model living in AdS5. At strong coupling, the dual description becomes classical and we demonstrate explicitly the classical integrability of the model. We test our results by reproducing the strong coupling limit of the 4-point correlator computed before non-perturbatively from the conformal partial wave expansion. Next, by applying the canonical quantization procedure with constraints, we show that the model describes a quantum integrable chain of particles propagating in AdS5. Finally, we reveal a discrete reparametrization symmetry of the model and reproduce the spectrum when known analytically. Due to the simplicity of our model, it could provide an ideal playground for holography. Furthermore, since the fishnet model and N=4 SYM theory are continuously linked our consideration could shed light on the derivation of AdS/CFT for the latter. This talk is based on recent work with Amit Sever.

Fri, 08 Nov 2019

16:00 - 17:00
L1

North Meets South

Joseph Keir and Priya Subramanian
Abstract

Speaker: Joseph Keir (North)
Title: Dispersion (or not) in nonlinear wave equations
Abstract: Wave equations are ubiquitous in physics, playing central roles in fields as diverse as fluid dynamics, electromagnetism and general relativity. In many cases of these wave equations are nonlinear, and consequently can exhibit dramatically different behaviour when their solutions become large. Interestingly, they can also exhibit differences when given arbitrarily small initial data: in some cases, the nonlinearities drive solutions to grow larger and even to blow up in a finite time, while in other cases solutions disperse just like the linear case. The precise conditions on the nonlinearity which discriminate between these two cases are unknown, but in this talk I will present a conjecture regarding where this border lies, along with some conditions which are sufficient to guarantee dispersion.

Speaker: Priya Subramanian (South)
Title: What happens when an applied mathematician uses algebraic geometry?
Abstract: A regular situation that an applied mathematician faces is to obtain the equilibria of a set of differential equations that govern a system of interest. A number of techniques can help at this point to simplify the equations, which reduce the problem to that of finding equilibria of coupled polynomial equations. I want to talk about how homotopy methods developed in computational algebraic geometry can solve for all solutions of coupled polynomial equations non-iteratively using an example pattern forming system. Finally, I will end with some thoughts on what other 'nails' we might use this new shiny hammer on.

 

Fri, 08 Nov 2019

15:00 - 16:00
N3.12

Simplicial Mixture Models - Fitting topology to data

James Griffin
(University of Coventry)
Abstract

Lines and planes can be fitted to data by minimising the sum of squared distances from the data to the geometric object.  But what about fitting objects from topology such as simplicial complexes?  I will present a method of fitting topological objects to data using a maximum likelihood approach, generalising the sum of squared distances.  A simplicial mixture model (SMM) is specified by a set of vertex positions and a weighted set of simplices between them.  The fitting process uses the expectation-maximisation (EM) algorithm to iteratively improve the parameters.

Remarkably, if we allow degenerate simplices then any distribution in Euclidean space can be approximated arbitrarily closely using a SMM with only a small number of vertices.  This theorem is proved using a form of kernel density estimation on the n-simplex.

Fri, 08 Nov 2019

14:00 - 15:00
L6

The role of ice shelves for marine ice sheet stability

Marianne Haseloff
(University of Oxford)
Further Information

The West Antarctic Ice Sheet is a marine ice sheet that rests on a bed below sea level. The stability of a marine ice sheet and its contribution to future sea level rise are controlled by the dynamics of the grounding line, where the grounded ice sheet transitions into a floating ice shelf. Recent observations suggest that Antarctic ice shelves experience widespread thinning due to contact with warming ocean waters, but quantifying the effect of these changes on marine ice sheet stability and extent remains a major challenge for both observational and modelling studies. In this talk, I show that grounding line stability of laterally confined marine ice sheets and outlet glaciers is governed by ice shelf dynamics, in particular calving front and melting conditions. I will discuss the implications of this dependence for projections of the future evolution of the West Antarctic Ice Sheet.

Fri, 08 Nov 2019

14:00 - 15:00
L1

Banish imposter feelings (and trust you belong!)

Maureen Freed and Ben Walker
Abstract

How can it be that so many clever, competent and capable people can feel that they are just one step away from being exposed as a complete fraud? Despite evidence that they are performing well they can still have that lurking fear that at any moment someone is going to tap them on the shoulder and say "We need to have a chat". If you've ever felt like this, or you feel like this right now, then this Friday@2 session might be of interest to you. We'll explore what "Imposter Feelings" are, why we get them and steps you can start to take to help yourself and others. This event is likely to be of interest to undergraduates and MSc students at all stages. 

Fri, 08 Nov 2019

12:00 - 13:00
L4

Algebra, Geometry and Topology of ERK Enzyme Kinetics

Heather Harrington
(Mathematical Institute (University of Oxford))
Abstract

In this talk I will analyse ERK time course data by developing mathematical models of enzyme kinetics. I will present how we can use differential algebra and geometry for model identifiability, and topological data analysis to study these the dynamics of ERK. This work is joint with Lewis Marsh, Emilie Dufresne, Helen Byrne and Stanislav Shvartsman.

Fri, 08 Nov 2019

10:00 - 11:00
L3

Financial modelling and utilisation of a diverse range of data sets in oil markets

Milos Krkic
(BP IST Data Strategists)
Abstract

We will present three problems that we are interested in:

Forecast of volatility both at the instrument and portfolio level by combining a model based approach with data driven research
We will deal with additional complications that arise in case of instruments that are highly correlated and/or with low volumes and open interest.
Test if volatility forecast improves metrics or can be used to derive alpha in our trading book.

Price predication using physical oil grades data
Hypothesis:
Physical markets are most reflective of true fundamentals. Derivative markets can deviate from fundamentals (and hence physical markets) over short term time horizons but eventually converge back. These dislocations would represent potential trading opportunities.
The problem:
Can we use the rich data from the physical market prices to predict price changes in the derivative markets?
Solution would explore lead/lag relationships amongst a dataset of highly correlated features. Also explore feature interdependencies and non-linearities.
The prediction could be in the form of a price target for the derivative (‘fair value’), a simple direction without magnitude, or a probabilistic range of outcomes.

Modelling oil balances by satellite data
The flow of oil around the world from being extracted, refined, transported and consumed, forms a very large dynamic network. At both regular and irregular intervals, we can make noisy measurements of the amount of oil at certain points in the network.
In addition, we have general macro-economic information about the supply and demand of oil in certain regions.
Based on that information, with general information about the connections between nodes in the network i.e. the typical rate of transfer, one can build a general model for how oil flows through the network.
We would like to build a probabilistic model on the network, representing our belief about the amount of oil stored at each of our nodes, which we refer to as balances.
We want to focus on particular parts of the network where our beliefs can be augmented by satellite data, which can be done by focusing on a sub network containing nodes that satellite measurements can be applied to.

Thu, 07 Nov 2019
16:00
L6

Number fields with prescribed norms

Rachel Newton
(Reading)
Abstract

Let G be a finite abelian group, let k be a number field, and let x be an element of k. We count Galois extensions K/k with Galois group G such that x is a norm from K/k. In particular, we show that such extensions always exist. This is joint work with Christopher Frei and Daniel Loughran.

Thu, 07 Nov 2019

16:00 - 17:30
L3

Liquid droplets on a surface

Andrew Archer
(Loughborough University)
Abstract

The talk will begin with an introduction to the science of what determines the behaviour of a liquid on a on a surface and giving an overview of some of the different theories that can be used to describe the shape and structure of the liquid in the drop. These include microscopic density functional theory (DFT), which describes the liquid structure on the scale of the individual liquid molecules, and mesoscopic thin film equation (PDE) and kinetic Monte-Carlo models. A DFT based method for calculating the binding potential ?(h) for a film of liquid on a solid surface, where h is the thickness of the liquid film, will be presented. The form of ?(h) determines whether or not the liquid wets the surface. Calculating drop profiles using both DFT and also from inputting ?(h) into the mesoscopic theory and comparing quantities such as the contact angle and the shape of the drops, we find good agreement between the two methods, validating the coarse-graining. The talk will conclude with a discussion of some recent work on modelling evaporating drops with applications to inkjet printing.

Thu, 07 Nov 2019

16:00 - 17:00
L4

Sensitivity Analysis of the Utility Maximization Problem with Respect to Model Perturbations

Oleksii Mostovyi
(University of Connecticut)
Abstract

First, we will give a brief overview of the asymptotic analysis results in the context of optimal investment. Then, we will focus on the sensitivity of the expected utility maximization problem in a continuous semimartingale market with respect to small changes in the market price of risk. Assuming that the preferences of a rational economic agent are modeled by a general utility function, we obtain a second-order expansion of the value function, a first-order approximation of the terminal wealth, and construct trading strategies that match the indirect utility function up to the second order. If a risk-tolerance wealth process exists, using it as numeraire and under an appropriate change of measure, we reduce the approximation problem to a Kunita–Watanabe decomposition. Then we discuss possible extensions and special situations, in particular, the power utility case and models that admit closed-form solutions. The central part of this talk is based on the joint work with Mihai Sirbu.

Thu, 07 Nov 2019

14:30 - 15:30
N3.12

5d SCFT (part 1)

Max Hubner and Marieke Van Beest
Thu, 07 Nov 2019

14:00 - 15:00
L4

A posteriori error analysis for domain decomposition

Simon Tavener
(Colorado State University)
Abstract

Domain decomposition methods are widely employed for the numerical solution of partial differential equations on parallel computers. We develop an adjoint-based a posteriori error analysis for overlapping multiplicative Schwarz domain decomposition and for overlapping additive Schwarz. In both cases the numerical error in a user-specified functional of the solution (quantity of interest), is decomposed into a component that arises due to the spatial discretization and a component that results from of the finite iteration between the subdomains. The spatial discretization error can be further decomposed in to the errors arising on each subdomain. This decomposition of the total error can then be used as part of a two-stage approach to construct a solution strategy that efficiently reduces the error in the quantity of interest.

Thu, 07 Nov 2019

12:00 - 13:00
L4

A new Federer-type characterization of sets of finite perimeter

Panu Lahti
(University of Augsburg)
Abstract

Federer’s characterization, which is a central result in the theory of functions of bounded variation, states that a set is of finite perimeter if and only if n−1-dimensional Hausdorff measure of the set's measure-theoretic boundary is finite. The measure-theoretic boundary consists of those points where both the set and its complement have positive upper density. I show that the characterization remains true if the measure-theoretic boundary is replaced by a smaller boundary consisting of those points where the lower densities of both the set and its complement are at least a given positive constant.