Fri, 22 Feb 2019

11:45 - 13:15
L2

InFoMM CDT Group Meeting

Helen Fletcher, Bogdan Toader, Jessica Williams, Giuseppe Ughi
(Mathematical Institute)
Thu, 21 Feb 2019
17:00
L5

Actions of automorphism groups of omega-categorical structures on compact spaces

David Evans
(Imperial College, London)
Abstract

If G is a topological group, a G-flow X is a non-empty, compact, Hausdorff space on which G acts continuously; it is minimal if all G-orbits are dense. By a theorem of Ellis, there is a (unique) minimal G-flow M(G) which is universal: there is a continuous G-map to every other G-flow. 

Here, we will be interested in the case where G = Aut(K) for some structure K, usually omega-categorical. Work of Kechris, Pestov and Todorcevic and others gives conditions on K under which structural Ramsey Theory (due to Nesetril - Rodl and others) can be used to compute M(G). 

In the first part of the talk I will give a description of the above theory and when it applies (the 'tame case'). In the second part, I will describe joint work with J. Hubicka and J. Nesetril which shows that the omega-categorical structures constructed in the late 1980's by Hrushovski as counterexamples to Lachlan's conjecture are not tame and moreover, minimal flows of their automorphism groups have rather different properties to those in the tame case. 

Thu, 21 Feb 2019

16:00 - 17:00
L6

GCD sums and sum-product estimates

Aled Walker
(University of Cambridge)
Abstract


When S is a finite set of natural numbers, a GCD-sum is a particular kind of double-sum over the elements of S, and they arise naturally in several settings. In particular, these sums play a role when one studies the local statistics of point sequences on the unit circle. There are known upper bounds for the size of a GCD-sum in terms of the size of the set S, most recently due to de la Bretèche and Tenenbaum, and these bounds are sharp. Yet the known examples of sets S for which the GCD-sum over S provides a matching lower bound all possess strong multiplicative structure, whereas in applications the set S often comes with additive structure. In this talk I will describe recent joint work with Thomas Bloom in which we apply an estimate from sum-product theory to prove a much stronger upper bound on a GCD-sum over an additively structured set. I will also describe an application of this improvement to the study of the distribution of points on the unit circle, with a further application to arbitrary infinite subsets of squares. 

Thu, 21 Feb 2019

16:00 - 17:30
L4

Zero-sum stopping games with asymmetric information

Jan Palczewski
(Leeds University)
Abstract

We study the value of a zero-sum stopping game in which the terminal payoff function depends on the underlying process and on an additional randomness (with finitely many states) which is known to one player but unknown to the other. Such asymmetry of information arises naturally in insider trading when one of the counterparties knows an announcement before it is publicly released, e.g., central bank's interest rates decision or company earnings/business plans. In the context of game options this splits the pricing problem into the phase before announcement (asymmetric information) and after announcement (full information); the value of the latter exists and forms the terminal payoff of the asymmetric phase.

The above game does not have a value if both players use pure stopping times as the informed player's actions would reveal too much of his excess knowledge. The informed player manages the trade-off between releasing information and stopping optimally employing randomised stopping times. We reformulate the stopping game as a zero-sum game between a stopper (the uninformed player) and a singular controller (the informed player). We prove existence of the value of the latter game for a large class of underlying strong Markov processes including multi-variate diffusions and Feller processes. The main tools are approximations by smooth singular controls and by discrete-time games.

Thu, 21 Feb 2019
16:00
C4

The Story of C^infinity Algebraic Geometry

Kelli Francis-Staite
(Oxford University)
Abstract

After considering motivations in symplectic geometry, I’ll give a summary of $C^\infty$-Algebraic Geometry and how to extend these concepts to manifolds with corners. 

Thu, 21 Feb 2019

16:00 - 17:30
L3

Strategies for Multilevel Monte Carlo for Bayesian Inversion

Professor Kody Law
(University of Manchester)
Abstract

This talk will concern the problem of inference when the posterior measure involves continuous models which require approximation before inference can be performed. Typically one cannot sample from the posterior distribution directly, but can at best only evaluate it, up to a normalizing constant. Therefore one must resort to computationally-intensive inference algorithms in order to construct estimators. These algorithms are typically of Monte Carlo type, and include for example Markov chain Monte Carlo, importance samplers, and sequential Monte Carlo samplers. The multilevel Monte Carlo method provides a way of optimally balancing discretization and sampling error on a hierarchy of approximation levels, such that cost is optimized. Recently this method has been applied to computationally intensive inference. This non-trivial task can be achieved in a variety of ways. This talk will review 3 primary strategies which have been successfully employed to achieve optimal (or canonical) convergence rates – in other words faster convergence than i.i.d. sampling at the finest discretization level. Some of the specific resulting algorithms, and applications, will also be presented.

Thu, 21 Feb 2019

14:00 - 15:00
Rutherford Appleton Laboratory, nr Didcot

Tomographic imaging with flat-field uncertainty

Prof Martin Skovgaard Andersen
(Danish Technical University)
Abstract

Classical methods for X-ray computed tomography (CT) are based on the assumption that the X-ray source intensity is known. In practice, however, the intensity is measured and hence uncertain. Under normal circumstances, when the exposure time is sufficiently high, this kind of uncertainty typically has a negligible effect on the reconstruction quality. However, in time- or dose-limited applications such as dynamic CT, this uncertainty may cause severe and systematic artifacts known as ring artifacts.
By modeling the measurement process and by taking uncertainties into account, it is possible to derive a convex reconstruction model that leads to improved reconstructions when the signal-to-noise ratio is low. We discuss some computational challenges associated with the model and illustrate its merits with some numerical examples based on simulated and real data.

Thu, 21 Feb 2019
12:00
L4

The relationship between failure of a Liouville type theorem and Type I singularities of the Navier-Stokes equations

Tobias Barker
(École Normale Superieure (DMA))
Abstract

In this talk, we demonstrate that formation of Type I singularities of suitable weak solutions of the Navier-Stokes equations occur if there exists non-zero mild bounded ancient solutions satisfying a 'Type I' decay condition. We will also discuss some new Liouville type Theorems. Joint work with Dallas Albritton (University of Minnesota).

Wed, 20 Feb 2019

17:00 - 18:00
C1

Virtual fibring of manifolds and groups

Dawid Kielak
Abstract

I will discuss Agol's proof of the Virtually Fibred Conjecture of
Thurston, focusing on the role played by the `RFRS' property. I will
then show how one can modify parts of Agol's proof by replacing some
topological considerations with a group theoretic statement about
virtual fibring of RFRS groups.
 

Wed, 20 Feb 2019
16:00
C1

Pathological topology in boundaries of hyperbolic groups

Benjamin Barrett
(Bristol University)
Abstract

In geometric group theory we study groups by their actions on metric spaces. Although a given group might admit many actions on different metric spaces, on a large scale these spaces will all look similar, and so the large scale properties of a space on which a group acts are intrinsic to the group. One particularly natural example of a large scale property used in this way is the Gromov boundary of a hyperbolic metric space. This is a topological space that can be thought of as compactifying the metric space at infinity. 

In this talk I will describe some constructions of spaces occurring in this way with nasty, fractal-like properties. On the other hand, there are limits to how pathological these spaces can be: theorems of Bestvina and Mess, Bowditch and Swarup imply that boundaries of hyperbolic groups are locally path connected whenever they are connected. I will discuss these results and some generalisations. 

Wed, 20 Feb 2019
16:00
C2

‘Expansivity and shadowing’

Chris Good
(Birmingham)
Abstract

Abstract:   Let $f$ be a continuous surjection from the compact metric space $X$ to itself. 

 

We say that the dynamical system $(X,f)$ has shadowing if for every $\epsilon>0$ there is a $\delta>0$ such that every $\delta$-pseudo orbit is $\epsilon$-shadowed.  Here a sequence $(x_n)$ is a $\delta$-pseudo orbit provided the distance from $f(x_n)$ to $x_{n+1}$ is less than $\delta$ and $(x_n)$ is $\epsilon$-shadowed if there is a point $z$ such that the distance from $x_n$ to $f^n(z)$ is less than $\epsilon$.  

 

If $f$ is a homeomorphism, $(X,f)$ is said to be expansive if there is some $c>0$, such that if the distance from $f^n(x)$ and $f^n(y)$ is less than $c$ for all $n\in \mathbb Z$, then $x=y$.

 

In his proof that a homeomorphism that is expansive and has shadowing is stable, Walters shows that in an expansive system with shadowing, a pseudo orbit is shadowed by exactly one point.  It turns out that the converse is also true: if the system has unique shadowing (in the above sense), then it is expansive.

 

In this talk, which is joint work with Joel Mitchell and Joe Thomas, we explore this notion of unique shadowing.

Wed, 20 Feb 2019
11:00
N3.12

A curve in the Möbius band

Esteban Gomezllata Marmolejo
(University of Oxford)
Abstract


Suppose that you have a long strip of paper, and draw the central line through it. You then glue it together so as to make a Möbius band. Can the drawn curve be contained in a plane?

We'll answer the question in this talk, as well as introduce the concepts from the Geometry of Surfaces course required to go through it; including Gauss' one and only Theorema Egregium! (we won't prove it though).

Tue, 19 Feb 2019

14:30 - 15:30

The generalised Oberwolfach problem

Katherine Staden
Further Information

Recently, much progress has been made on the general problem of decomposing a dense (usually complete) graph into a given family of sparse graphs (e.g. Hamilton cycles or trees). I will present a new result of this type: that any quasirandom dense large graph in which all degrees are equal and even can be decomposed into any given collection of two-factors (2-regular spanning subgraphs). A special case of this result reproves the Oberwolfach problem for large graphs.

 

This is joint work with Peter Keevash.

Tue, 19 Feb 2019

14:30 - 15:00
L3

Univariate and Multivariate Polynomials in Numerical Analysis

Lloyd N. Trefethen
(Oxford)
Abstract

We begin by reviewing numerical methods for problems in one variable and find that univariate polynomials are the starting point for most of them.  A similar review in several variables, however, reveals that multivariate polynomials are not so important.  Why?  On the other hand in pure mathematics, the field of algebraic geometry is precisely the study of multivariate polynomials.  Why?

Tue, 19 Feb 2019
14:15
L4

Arithmetic D-modules over Laurent series fields

Daniel Caro
(Caen)
Abstract

Let k be a characteristic $p>0$ perfect field, V be a complete DVR whose residue field is $k$ and fraction field $K$ is of characteristic $0$. We denote by $\mathcal{E}  _K$ the Amice ring with coefficients in $K$, and by $\mathcal{E} ^\dagger _K$ the bounded Robba ring with coefficients in $K$. Berthelot's classical theory of Rigid Cohomology over varieties $X/k((t))$ gives $\mathcal{E}  _K$-valued objects.  Recently, Lazda and Pal developed a refinement of rigid cohomology,
i.e. a theory of $\mathcal{E} ^\dagger _K$-valued Rigid Cohomology over varieties $X/k((t))$. Using this refinement, they proved a semistable version of the variational Tate conjecture. 

The purpose of this talk is to introduce to a theory of arithmetic D-modules with $\mathcal{E} ^\dagger _K$-valued cohomology which satisfies a formalism of Grothendieck’s six operations. 
 

Tue, 19 Feb 2019

14:00 - 14:30
L3

Stochastic Analysis and Correction of Floating Point Errors in Monte Carlo Simulations

Oliver Sheridan-Methven
(Oxford)
Abstract

In this talk we will show how the floating point errors in the simulation of SDEs (stochastic differential equations) can be modelled as stochastic. Furthermore, we will show how these errors can be corrected within a multilevel Monte Carlo approach which performs most calculations with low precision, but a few calculations with higher precision. The same procedure can also be used to correct for errors in converting from uniform random numbers to approximate Normal random numbers. Numerical results will be generated on both CPUs (using single/double precision) and GPUs (using half/single precision).

Tue, 19 Feb 2019

12:45 - 13:30
C3

Model of a cycling coexistence of viral strains and a survival of the specialist

Anel Nurtay
Abstract

With growing population of humans being clustered in large cities and connected by fast routes more suitable environments for epidemics are being created. Topped by rapid mutation rate of viral and bacterial strains, epidemiological studies stay a relevant topic at all times. From the beginning of 2019, the World Health Organization publishes at least five disease outbreak news including Ebola virus disease, dengue fever and drug resistant gonococcal infection, the latter is registered in the United Kingdom.

To control the outbreaks it is necessary to gain information on mechanisms of appearance and evolution of pathogens. Close to all disease-causing virus and bacteria undergo a specialization towards a human host from the closest livestock or wild fauna of a shared habitat. Every strain (or subtype) of a pathogen has a set of characteristics (e.g. infection rate and burst size) responsible for its success in a new environment, a host cell in case of a virus, and with the right amount of skepticism that set can be framed as fitness of the pathogen. In our model, we consider a population of a mutating strain of a virus. The strain specialized towards a new host usually remains in the environment and does not switch until conditions get volatile. Two subtypes, wild and mutant, of the virus share a host. This talk will illustrate findings on an explicitly independent cycling coexistence of the two subtypes of the parasite population. A rare transcritical bifurcation of limit cycles is discussed. Moreover, we will find conditions when one of the strains can outnumber and eventually eliminate the other strain focusing on an infection rate as fitness of strains.

Tue, 19 Feb 2019
12:00
L4

Mysteries of isolated horizons

Jerzy Lewandowski
(University of Warsaw)
Abstract

Mysteries of isolated horizons: the Near Horizon Geometry equation, geometric characterizations of the non-extremal Kerr horizon, spacetimes foliated by non-expanding horizons.

3-dimensional null surfaces  that are  Killing horizons to the second order  are  considered. They are embedded in 4-dimensional spacetimes that satisfy the vacuum Einstein equations with arbitrary cosmological constant. Internal geometry of 2-dimensional cross sections of  the horizons  consists of induced metric tensor and a rotation 1-form potential. It is subject to the type D equation. The equation is interesting from the both, mathematical and physical points of view. Mathematically it  involves  geometry, holomorphic structures and algebraic topology.  Physically, the equation knows the secrete of black holes: the only  axisymmetric solutions on topological sphere  correspond  to the the Kerr / Kerr-de Sitter / Kerr-anti-de-Sitter non-extremal black holes or to the near horizon limit  of the extremal ones.  In the case of bifurcated  horizons the type D equation implies another spacial  symmetry. In this way the axial symmetry may be ensured without the rigidity theorem. The type D equation does not allow rotating horizons of topology different then that of the  sphere (or its quotient). That completes a new local non-her theorem. The type D equation is also  an integrability condition for the  Near Horizon Geometry equation and leads to new results on the solution existence issue.
 

Mon, 18 Feb 2019

17:00 - 18:00
L5

A Beautiful Game from the War: Piet Hein, John Nash, Martin Gardner and Hex

Ryan Hayward
(University of Alberta)
Abstract

Seeking income during World War II, Piet Hein created the game now called Hex, marketing it through the Danish newspaper Politiken.  The game was popular but disappeared in 1943 when Hein fled Denmark.

The game re-appeared in 1948 when John Nash introduced it to Princeton's game theory group, and became popular again in 1957 after Martin Gardner's column --- "Concerning the game of Hex, which may be played on the tiles of the bathroom floor" --- appeared in Scientific American.

I will survey the early history of Hex, highlighting the war's influence on Hein's design and marketing, Hein's mysterious puzzle-maker, and Nash's fascination with Hex's theoretical properties.

Mon, 18 Feb 2019
16:30
L1

Structure of approximate subgroups of nilpotent groups and applications

Romain Tessera
(University of Paris Sud)
Abstract

In a joint work with Matt Tointon, we study the fine structure of approximate groups. We deduce various applications on growth, isoperimetry and quantitative estimates for the the simple random walk on finite vertex transitive graphs.

Mon, 18 Feb 2019

16:00 - 17:00
L4

Hypoelliptic Laplacian, Brownian motion and the trace formula

Jean-Michel Bismut
(Universite Paris-Sud)
Abstract

The hypoelliptic Laplacian is a family of operators indexed by $b \in \mathbf{R}^*_+$, acting on the total space of the tangent bundle of a Riemannian manifold, that interpolates between the ordinary Laplacian as $b \to 0$ and the generator of the geodesic flow as $b \to +\infty$. These operators are not elliptic, they are not self-adjoint, they are hypoelliptic. One can think of the total space of the tangent bundle as the phase space of classical mechanics; so that the hypoelliptic Laplacian produces an interpolation between the geodesic flow and its quantisation. There is a dynamical counterpart, which is a natural interpolation between classical Brownian motion and the geodesic flow.

The hypoelliptic deformation preserves subtle invariants of the Laplacian. In the case of locally symmetric spaces (which are defined via Lie groups), the deformation is essentially isospectral, and leads to geometric formulas for orbital integrals, a key ingredient in Selberg's trace formula.

In a first part of the talk, I will describe the geometric construction of the hypoelliptic Laplacian in the context of de Rham theory. In a second part, I will explain applications to the trace formula.

 

Mon, 18 Feb 2019

15:45 - 16:45
L3

The branching-ruin number, the once-reinforced random walk, and other results

DANIEL KIOUS
(University of Bath)
Abstract

In a joint-work with Andrea Collevecchio and Vladas Sidoravicius,  we study  phase transitions in the recurrence/transience of a class of self-interacting random walks on trees, which includes the once-reinforced random walk. For this purpose, we define the branching-ruin number of a tree, which is  a natural way to measure trees with polynomial growth and therefore provides a polynomial version of the branching number defined by Furstenberg (1970) and studied by R. Lyons (1990). We prove that the branching-ruin number of a tree is equal to the critical parameter for the recurrence/transience of the once-reinforced random walk on this tree. We will also mention two other results where the branching-ruin number arises as critical parameter: first, in the context of random walks on heavy-tailed random conductances on trees and, second, in the case of Volkov's M-digging random walk.

Mon, 18 Feb 2019
15:30
L1

Cross ratios on cube complexes and length-spectrum rigidity

Elia Fioravanti
(Oxford)
Abstract

A conjecture from the '80s claims that the isometry type of a closed, negatively curved Riemannian manifold should be uniquely determined by the lengths of its closed geodesics. By work of Otal, this is essentially equivalent to the problem of extending cross-ratio preserving maps between Gromov boundaries of simply connected, negatively curved manifolds. Progress on the conjecture has been remarkably slow, with only the 2-dimensional and locally symmetric cases having been solved so far (Otal '90 and Hamenstädt '99).
Still, it is natural to try leaving the world of manifolds and address the conjecture in the general context of non-positively curved metric spaces. We restrict to the class of CAT(0) cube complexes, as their geometry is both rich and well-understood. We introduce a new notion of cross ratio on their horoboundary and use it to provide a full answer to the conjecture in this setting. More precisely, we show that essential, hyperplane-essential cubulations of Gromov-hyperbolic groups are completely determined by their combinatorial length functions. One can also consider non-proper non-cocompact actions of non-hyperbolic groups, as long as the cube complexes are irreducible and have no free faces.
Joint work with J. Beyrer and M. Incerti-Medici.

Mon, 18 Feb 2019
14:15
L1

RAAGs and Stable Commutator Length

Nicolaus Heuer
(Oxford)
Abstract

Stable commutator length (scl) is a well established invariant of elements g in the commutator subgroup (write scl(g)) and has both geometric and algebraic meaning.  A group has a \emph{gap} in stable commutator length if for every non-trivial element g, scl(g) > C for some C > 0.
SCL may be interpreted as an 'algebraic translation length' and such a gap may be thus interpreted an 'algebraic injectivity radius'.
Many classes of groups have such a gap, like hyperbolic groups, mapping class groups, Baumslag-Solitar groups and graph of groups.
In this talk I will show that Right-Angled Artin Groups have the optimal scl-gap of 1/2. This yields a new invariant for the vast class of subgroups of Right-Angled Artin Groups.