Thu, 08 Nov 2018
16:00
C5

Classifications of Topological Quantum Field Theories

Peter Banks
(Oxford University)
Abstract

TQFTs lie at the intersection of maths and theoretical physics. Topologically, they are a recipe for calculating an invariant of manifolds by cutting them into elementary pieces; physically, they describe the evolution of the state of a particle. These two viewpoints allow physical intuition to be harnessed to shed light on topological problems, including understanding the topology of 4-manifolds and calculating geometric invariants using topology.

Recent results have provided classifications of certain types of TQFTs as algebraic structures. After reviewing the definition of TQFTs and giving some diagrammatic examples, I will give informal arguments as to how these classifications arise. Finally, I will show that in many cases these algebras are in fact free, and give an explicit classification of them in this case.
 

Thu, 08 Nov 2018

16:00 - 17:30
L4

On fully-dynamic risk-indifference pricing: time-consistency and other properties

Giulia Di Nunno
Abstract

Risk-indifference pricing is proposed as an alternative to utility indifference pricing, where a risk measure is used instead of a utility based preference. In this, we propose to include the possibility to change the attitude to risk evaluation as time progresses. This is particularly reasonable for long term investments and strategies. 

Then we introduce a fully-dynamic risk-indifference criteria, in which a whole family of risk measures is considered. The risk-indifference pricing system is studied from the point of view of its properties as a convex price system. We tackle questions of time-consistency in the risk evaluation and the corresponding prices. This analysis provides a new insight also to time-consistency for ordinary dynamic risk-measures.

Our techniques and results are set in the representation and extension theorems for convex operators. We shall argue and finally provide a setting in which fully-dynamic risk-indifference pricing is a well set convex price system.

The presentation is based on joint works with Jocelyne Bion-Nadal.

Thu, 08 Nov 2018

14:00 - 15:00
L4

Oscillation in a posteriori error analysis

Prof. Christian Kreuzer
(University of Dortmund)
Abstract


A posteriori error estimators are a key tool for the quality assessment of given finite element approximations to an unknown PDE solution as well as for the application of adaptive techniques. Typically, the estimators are equivalent to the error up to an additive term, the so called oscillation. It is a common believe that this is the price for the `computability' of the estimator and that the oscillation is of higher order than the error. Cohen, DeVore, and Nochetto [CoDeNo:2012], however, presented an example, where the error vanishes with the generic optimal rate, but the oscillation does not. Interestingly, in this example, the local $H^{-1}$-norms are assumed to be computed exactly and thus the computability of the estimator cannot be the reason for the asymptotic overestimation. In particular, this proves both believes wrong in general. In this talk, we present a new approach to posteriori error analysis, where the oscillation is dominated by the error. The crucial step is a new splitting of the data into oscillation and oscillation free data. Moreover, the estimator is computable if the discrete linear system can essentially be assembled exactly.
 

Thu, 08 Nov 2018

13:00 - 14:00
L4

Talks by graduate students

Donovan Platt and Yufei Zhang (DPhil students)
((Oxford University))
Abstract

Donovan Platt
-------------
Economic Agent-Based Model Calibration

Interest in agent-based models of financial markets and the wider economy has increased consistently over the last few decades, in no small part due to their ability to reproduce a number of empirically-observed stylised facts that are not easily recovered by more traditional modelling approaches. Nevertheless, the agent-based modelling paradigm faces mounting criticism, focused particularly on the rigour of current validation and calibration practices, most of which remain qualitative and stylised fact-driven. While the literature on quantitative and data-driven approaches has seen significant expansion in recent years, most studies have focused on the introduction of new calibration methods that are neither benchmarked against existing alternatives nor rigorously tested in terms of the quality of the estimates they produce. We therefore compare a number of prominent ABM calibration methods, both established and novel, through a series of computational experiments in an attempt to determine the respective strengths and weaknesses of each approach and the overall quality of the resultant parameter estimates. We find that Bayesian estimation, though less popular in the literature, consistently outperforms frequentist, objective function-based approaches and results in reasonable parameter estimates in many contexts. Despite this, we also find that agent-based model calibration techniques require further development in order to definitively calibrate large-scale models.

Yufei Zhang
-----------
A penalty scheme and policy iteration for stochastic hybrid control problems with nonlinear expectations

We propose a penalty method for mixed optimal stopping and control problems where the objective is evaluated
by a nonlinear expectation. The solution and free boundary of an associated HJB variational inequality are constructed from a sequence
of penalized equations, for which the penalization error is estimated. The penalized equation is then discretized by a class of semi-implicit
monotone approximations. We further propose an efficient iterative algorithm with local superlinear convergence for solving the discrete
equation. Numerical experiments are presented for an optimal investment problem under ambiguity to demonstrate the effectiveness of
the new schemes.  Finally, we extend the penalty schemes to solve stochastic hybrid control problems involving impulse controls.

Thu, 08 Nov 2018

12:00 - 13:00
S1.37

TBH

Frederik Sørensen (University of Oxford)
(University of Oxford)
Abstract

An informal session for DPhil students, ECRs and undergraduates with an interest in probability. The aim is to gain exposure to areas outside of your own research interests in an informal and accessible way.

Thu, 08 Nov 2018

12:00 - 13:00
L4

Regularity vs Singularities for immiscible incompressible Navier-Stokes fluids

Francisco Gancedo
(University of Seville)
Abstract

In this talk we consider several scenarios involving the interaction among incompressible fluids of different nature. The main concern is the dynamics of the free boundary separating the fluids, which evolves with the velocity flow. The important question to address is whether the regularity is preserved in time or, on the other hand, the system develops singularities. We focus on Navier-Stokes models, where the viscosity of the fluids play a crucial role. At first showing results of finite time blow-up for the case of vacuum-fluid interaction. Later discussing new recent results on global existence for 1996 P.L. Lions' conjecture for density patches evolving by inhomogeneous Navier-Stokes equations.

Wed, 07 Nov 2018
16:00
C1

Boundaries of Hyperbolic Groups

Sam Colvin
(Bristol University)
Abstract

You’re an amateur investigator hired to uncover the mysterious goings on of a dark cult. They call themselves Geometric Group Theorists and they’re under suspicion of pushing humanity’s knowledge too far. You’ve tracked them down to their supposed headquarters. Foolishly, you enter. Your mind writhes as you gaze unwittingly upon the Eldritch horror they’ve summoned… Group Theory! You think fast; donning the foggy glasses of quasi-isometry, you prevent your mind shattering from the unfathomable complexity of The Beast. You spy a weak spot and the phrase `Gromov Hyperbolicity’ flashes across your mind. You peer deeper, further, forever… only to find yourself somewhere rather familiar, strange, but familiar… no, self-similar! You’ve fought with fractals before, this weirdness can be tamed! Your insight is sufficient and The Beast retreats for now.
In other words, given an infinite group, we associate to it an infinite graph, called a Cayley graph, which gives us a notion of the ‘geometry’ of a group. Through this we can ask what kind of groups have hyperbolic geometry, or at least an approximation of it called Gromov hyperbolicity. Hyperbolic groups are quite a nice class of groups but a large one, so we introduce the Gromov boundary of a hyperbolic group and explain how it can be used to distinguish groups in this class.

Wed, 07 Nov 2018
15:00
L4

Lattice-Based Zero-Knowledge Arguments for Integer Relations

Khoa Nguyen
(Nanyang Technological University)
Abstract

We provide lattice-based protocols allowing to prove relations among committed integers. While the most general zero-knowledge proof techniques can handle arithmetic circuits in the lattice setting, adapting them to prove statements over the integers is non-trivial, at least if we want to handle exponentially large integers while working with a polynomial-size modulus qq. For a polynomial L, we provide zero-knowledge arguments allowing a prover to convince a verifier that committed L-bit bitstrings x, y and z are the binary representations of integers X, Y and Z satisfying Z=X+Y over the integers. The complexity of our arguments is only linear in L. Using them, we construct arguments allowing to prove inequalities X <Z among committed integers, as well as arguments showing that a committed X belongs to a public interval [α,β], where α and β can be arbitrarily large. Our range arguments have logarithmic cost (i.e., linear in L) in the maximal range magnitude. Using these tools, we obtain zero-knowledge arguments showing that a committed element X does not belong to a public set S using soft-O(n⋅log|S|) bits of communication, where n is the security parameter. We finally give a protocol allowing to argue that committed L-bit integers X, Y and Z satisfy multiplicative relations Z=XY over the integers, with communication cost subquadratic in L. To this end, we use our protocol for integer addition to prove the correct recursive execution of Karatsuba's multiplication algorithm. The security of our protocols relies on standard lattice assumptions with polynomial modulus and polynomial approximation factor.

 

Wed, 07 Nov 2018
11:00
S1.37

The Pigeonhole Geometry of Numbers and Sums of Squares

Jay Swar
(University of Oxford)
Abstract

Fermat’s two-squares theorem is an elementary theorem in number theory that readily lends itself to a classification of the positive integers representable as the sum of two squares. Given this, a natural question is: what is the minimal number of squares needed to represent any given (positive) integer? One proof of Fermat’s result depends on essentially a buffed pigeonhole principle in the form of Minkowski’s Convex Body Theorem, and this idea can be used in a nearly identical fashion to provide 4 as an upper bound to the aforementioned question (this is Lagrange’s four-square theorem). The question of identifying the integers representable as the sum of three squares turns out to be substantially harder, however leaning on a powerful theorem of Dirichlet and a handful of tricks we can use Minkowski’s CBT to settle this final piece as well (this is Legendre’s three-square theorem).

Tue, 06 Nov 2018
16:00
L5

Standard conjectures in model theory, and categoricity of comparison isomorphisms

Misha Gavrilovich
(Higher School of Economics)
Abstract


abstract:

In my talk I shall try to explain the following speculation and present some
evidence in the form of "correlations" between categoricity conjectures in
model theory and motivic conjectures in algebraic geometry.

Transfinite induction constructions developed in model theory are by now
sufficiently developed to be used to build analogues of objects in algebraic
geometry constructed with a choice of topology, such as a singular cohomology theory,
the Hodge decomposition, and fundamental groups of complex algebraic varieties.
Moreover, these algebraic geometric objects are often conjectured to satisfy
homogeneity or freeness properties which are true for objects constructed by
transfinite induction.


An example of this is Hrushovski fusion used to build Zilber pseudoexponentiation,
i.e. a group homomorphism  $ex:C^+ \to C^*$ which satisfies Schanuel conjecture,
a transcendence property analogous to Grothendieck conjecture on periods.


I shall also present a precise conjecture on "uniqueness" of Q-forms (comparison isomorphisms)
of complex etale cohomology, and will try to explain its relation to conjectures on l-adic
Galois representations coming from the theory of motivic Galois group.
 

Tue, 06 Nov 2018

15:45 - 16:45
L4

Cracked Polytopes and Fano Manifolds

Thomas Prince
(Oxford)
Abstract

Combining work of Galkin, Christopherson-Ilten, and Coates-Corti-Galkin-Golyshev-Kasprzyk we see that all smooth Fano threefolds admit a toric degeneration. We can use this fact to uniformly construct all Fano threefolds: given a choice of a fan we classify reflexive polytopes which break into unimodular pieces along this fan. We can then construct closed torus invariant embeddings of the corresponding toric variety using a technique - Laurent inversion - developed with Coates and Kaspzryk. The corresponding binomial ideal is controlled by the chosen fan, and in low enough codimension we can explicitly test deformations of this toric ideal. We relate the constructions we obtain to known constructions. We study the simplest case of the above construction, closely related to work of Abouzaid-Auroux-Katzarkov, in arbitrary dimension and use it to produce a tropical interpretation of the mirror superpotential via broken lines. We expect the computation to be the tropical analogue of a Floer theory calculation.

Tue, 06 Nov 2018

14:30 - 15:00
L5

Binary matrix completion for bioactivity predictions

Melanie Beckerleg
(Oxford)
Abstract

Matrix completion is an area of great mathematical interest and has numerous applications, including recommender systems for e-commerce. The recommender problem can be viewed as follows: given a database where rows are users and and columns are products, with entries indicating user preferences, fill in the entries so as to be able to recommend new products based on the preferences of other users. Viewing the interactions between user and product instead as interactions between potential drug chemicals and disease-causing target proteins, the problem is that faced within the realm of drug discovery. We propose a divide and conquer algorithm inspired by the work of [1], who use recursive rank-1 approximation. We make the case for using an LP rank-1 approximation, similar to that of [2] by a showing that it guarantees a 2-approximation to the optimal, even in the case of missing data. We explore our algorithm's performance for different test cases.

[1]  Shen, B.H., Ji, S. and Ye, J., 2009, June. Mining discrete patterns via binary matrix factorization. In Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 757-766). ACM.

[2] Koyutürk, M. and Grama, A., 2003, August. PROXIMUS: a framework for analyzing very high dimensional discrete-attributed datasets. In Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 147-156). ACM.

Tue, 06 Nov 2018
14:30
L6

Perfect matchings in random subgraphs of regular bipartite graphs

Michael Simkin
(Hebrew University of Jerusalem)
Abstract

The classical theory of Erdős–Rényi random graphs is concerned primarily with random subgraphs of $K_n$ or $K_{n,n}$. Lately, there has been much interest in understanding random subgraphs of other graph families, such as regular graphs.

We study the following problem: Let $G$ be a $k$-regular bipartite graph with $2n$ vertices. Consider the random process where, beginning with $2n$ isolated vertices, $G$ is reconstructed by adding its edges one by one in a uniformly random order. An early result in the theory of random graphs states that if $G=K_{n,n}$, then with high probability a perfect matching appears at the same moment that the last isolated vertex disappears. We show that if $k = Ω(n)$, then this holds for any $k$-regular bipartite graph $G$. This improves on a result of Goel, Kapralov, and Khanna, who showed that with high probability a perfect matching appears after $O(n \log(n))$ edges have been added to the graph. On the other hand, if $k = o(n / (\log(n) \log (\log(n)))$, we construct a family of $k$-regular bipartite graphs in which isolated vertices disappear long before the appearance of perfect matchings.

Joint work with Roman Glebov and Zur Luria.
 

Tue, 06 Nov 2018

14:00 - 14:30
L5

Solving Laplace's equation in a polygon

Lloyd N. Trefethen
(Oxford)
Abstract

There is no more classical problem of numerical PDE than the Laplace equation in a polygon, but Abi Gopal and I think we are on to a big step forward. The traditional approaches would be finite elements, giving a 2D representation of the solution, or integral equations, giving a 1D representation. The new approach, inspired by an approximation theory result of Donald Newman in 1964, leads to a "0D representation" -- the solution is the real part of a rational function with poles clustered exponentially near the corners of the polygon. The speed and accuracy of this approach are remarkable. For typical polygons of up to 8 vertices, we can solve the problem in less than a second on a laptop and evaluate the result in a few microseconds per point, with 6-digit accuracy all the way up to the corner singularities. We don't think existing methods come close to such performance. Next step: Helmholtz?
 

Tue, 06 Nov 2018

12:00 - 13:00
C4

The dynamics of the fear of crime

Rafael Prieto Curiel
(University of Oxford)
Abstract

There is a mismatch between levels of crime and its fear and often, cities might see an increase or a decrease in crime over time while the fear of crime remains unchanged. A model that considers fear of crime as an opinion shared by simulated individuals on a network will be presented, and the impact that different distributions of crime have on the fear experienced by the population will be explored. Results show that the dynamics of the fear is sensitive to the distribution of crime and that there is a phase transition for high levels of concentration of crime.

Mon, 05 Nov 2018

16:00 - 17:00
L4

On the Monge-Ampere equation via prestrained elasticity

Marta Lewicka
(University of Pittsburgh)
Abstract

In this talk, we will present results regarding the regularity and

rigidity of solutions to the Monge-Ampere equation, inspired by the role

played by this equation in the context of prestrained elasticity. We will

show how the Nash-Kuiper convex integration can be applied here to achieve

flexibility of Holder solutions, and how other techniques from fluid

dynamics (the commutator estimate, yielding the degree formula in the

present context) find their parallels in proving the rigidity. We will indicate

possible avenues for the future related research.

Mon, 05 Nov 2018
15:45
L6

Random graphs with constant r-balls

David Ellis
(Queen Mary University of London)
Abstract


Let F be a fixed infinite, vertex-transitive graph. We say a graph G is `r-locally F' if for every vertex v of G, the ball of radius r and centre v in G is isometric to the ball of radius r in F. For each positive integer n, let G_n = G_n(F,r) be a graph chosen uniformly at random from the set of all unlabelled, n-vertex graphs that are r-locally F. We investigate the properties that the random graph G_n has with high probability --- i.e., how these properties depend upon the fixed graph F. 
We show that if F is a Cayley graph of a torsion-free group of polynomial growth, then there exists a positive integer r_0 such that for every integer r at least r_0, with high probability the random graph G_n = G_n(F,r) defined above has largest component of size between n^{c_1} and n^{c_2}, where 0 < c_1 < c_2  < 1 are constants depending upon F alone, and moreover that G_n has at least exp(poly(n)) automorphisms. This contrasts sharply with the random d-regular graph G_n(d) (which corresponds to the case where F is replaced by the infinite d-regular tree).
Our proofs use a mixture of results and techniques from group theory, geometry and combinatorics, including a recent and beautiful `rigidity' result of De La Salle and Tessera.
We obtain somewhat more precise results in the case where F is L^d (the standard Cayley graph of Z^d): for example, we obtain quite precise estimates on the number of n-vertex graphs that are r-locally L^d, for r at least linear in d, using classical results of Bieberbach on crystallographic groups.
Many intriguing open problems remain: concerning groups with torsion, groups with faster than polynomial growth, and what happens for more general structures than graphs.
This is joint work with Itai Benjamini (Weizmann Institute).
 

Mon, 05 Nov 2018

15:45 - 16:45
L3

Anomalous diffusion in deterministic Lorentz gases

IAN MELBOURNE
(University of Warwick)
Abstract

The classical Lorentz gas model introduced by Lorentz in 1905, studied further by Sinai in the 1960s, provides a rich source of examples of chaotic dynamical systems with strong stochastic properties (despite being entirely deterministic).  Central limit theorems and convergence to Brownian motion are well understood, both with standard n^{1/2} and nonstandard (n log n)^{1/2} diffusion rates.

In joint work with Paulo Varandas, we discuss examples with diffusion rate n^{1/a}, 1<a<2, and prove convergence to an a-stable Levy process.  This includes to the best of our knowledge the first natural examples where the M_2 Skorokhod topology is the appropriate one.



 

Mon, 05 Nov 2018

14:15 - 15:15
L3

From Monge Transports to Skorokhod Embeddings

NASSIF GHOUSSOUB
(University of British Colombia)
Abstract

I will consider cost minimizing stopping time solutions to Skorokhod embedding problems, which deal with transporting a source probability measure to a given target measure through a stopped Brownian process. A PDE (free boundary problem) approach is used to address the problem in general dimensions with space-time inhomogeneous costs given by Lagrangian integrals along the paths.  An Eulerian---mass flow---formulation of the problem is introduced. Its dual is given by Hamilton-Jacobi-Bellman type variational inequalities.  Our key result is the existence (in a Sobolev class) of optimizers for this new dual problem, which in turn determines a free boundary, where the optimal Skorokhod transport drops the mass in space-time. This complements and provides a constructive PDE alternative to recent results of Beiglb\"ock, Cox, and Huesmann, and is a first step towards developing a general optimal mass transport theory involving mean field interactions and noise.

Mon, 05 Nov 2018

14:15 - 15:15
L4

Moduli spaces of reflexive sheaves and classification of distributions on P^3

Maurico Correa
(Minas Gerais)
Abstract

We describe the moduli space of distributions in terms of Grothendieck’s Quot-scheme for the tangent bundle. In certain cases, we show that the moduli space of codimension one distributions on the projective space is an irreducible, nonsingular quasi-projective variety.

 We study codimension one holomorphic distributions on projective three-space, analyzing the properties of their singular schemes and tangent sheaves. In particular, we provide a classification of codimension one distributions of degree at most 2. We show how the connectedness of the curves in the singular sets of foliations is an integrable phenomenon. This part of the  talk  is work joint with  M. Jardim(Unicamp) and O. Calvo-Andrade(Cimat).

We also study foliations by curves via the investigation  of their  singular schemes and  conormal  sheaves and we provide a classification  of foliations of degree at most 3 with  conormal  sheaves locally free.  Foliations of degrees  1 and 2 are aways given by a global intersection of two codimension one distributions. In the classification of degree 3 appear Legendrian foliations, foliations whose  conormal sheaves are instantons and other ” exceptional”
type examples. This part of the  talk   is  work joint with  M. Jardim(Unicamp) and S. Marchesi(Unicamp).

 

Mon, 05 Nov 2018
12:45
L3

Twisted BRST quantization and localization in supergravity

Sameer Murthy
(KCL)
Abstract

Supersymmetric localization is a powerful technique to evaluate a class of functional integrals in supersymmetric field theories. It reduces the functional integral over field space to ordinary integrals over the space of solutions of the off-shell BPS equations. The application of this technique to supergravity suffers from some problems, both conceptual and practical. I will discuss one of the main conceptual problems, namely how to construct the fermionic symmetry with which to localize. I will show how a deformation of the BRST technique allows us to do this. As an application I will then sketch a computation of the one-loop determinant of the super-graviton that enters the localization formula for BPS black hole entropy.