Thu, 30 Nov 2017
17:00
L3

RG flows in 3d N=4 gauge theories

Benjamin Assel
(Cern)
Abstract

I will present a new approach to study the RG flow in 3d N=4 gauge theories, based on an analysis of the Coulomb branch of vacua. The Coulomb branch is described as a complex algebraic variety and important information about the strongly coupled fixed points of the theory can be extracted from the study of its singularities. I will use this framework to study the fixed points of U(N) and Sp(N) gauge theories with fundamental matter, revealing some surprising scenarios at low amount of matter.

 
Thu, 30 Nov 2017
16:00
C4

Antonio Afieri

Antonio Afieri
(Central European University)
Abstract

 In a recent paper Friedl, Zentner and Livingston asked when a sum of torus knots is concordant to an alternating knot. After a brief analysis of the problem in its full generality, I will describe some effective obstructions based on Floer type theories.

Thu, 30 Nov 2017
16:00
L6

A Galois counting problem

Sam Chow
(York)
Abstract

We count monic quartic polynomials with prescribed Galois group, by box height. Among other things, we obtain the order of magnitude for  quartics, and show that non-quartics are dominated by reducibles. Tools include the geometry of numbers, diophantine approximation, the invariant theory of binary forms, and the determinant method. Joint with Rainer Dietmann.

Thu, 30 Nov 2017

16:00 - 17:30
L1

Mechanics of Incompatible Surface Growth

Giuseppe Zurlo
(NUI Galway)
Abstract

Inelastic surface growth associated with continuous creation of incompatibility on the boundary of an evolving body is behind a variety of both natural processes (embryonic development,  tree growth) and technological processes (dam construction, 3D printing). Despite the ubiquity of such processes, the mechanical aspects of surface growth are still not fully understood. In this talk we present  a new approach to surface growth that allows one to address inelastic effects,  path dependence of the growth process and the resulting geometric frustration. In particular, we show that incompatibility developed during deposition can be fine-tuned to ensure a particular behaviour of the system in physiological (or working) conditions. As an illustration, we compute an explicit deposition protocol aimed at "printing" arteries, that guarantees the attainment of desired stress distributions in physiological conditions. Another illustration is the growth starategy for explosive plants, allowing a complete release of residual elastic energy with a single cut.

Thu, 30 Nov 2017

16:00 - 17:30
L4

Short-term contingent claims on non-tradable assets: static hedging and pricing

Olivier Gueant
(Université Paris 1)
Abstract

In this talk, I consider the problem of pricing and (statically)
hedging short-term contingent claims written on illiquid or
non-tradable assets.
In a first part, I show how to find the best European payoff written
on a given set of underlying assets for hedging (under several
metrics) a given European payoff written on another set of underlying
assets -- some of them being illiquid or non-tradable. In particular,
I present new results in the case of the Expected Shortfall risk
measure. I also address the associated pricing problem by using
indifference pricing and its link with entropy.
In a second part, I consider the more classic case of hedging with a
finite set of simple payoffs/instruments and I address the associated
pricing problem. In particular, I show how entropic methods (Davis
pricing and indifference pricing à la Rouge-El Karoui) can be used in
conjunction with recent results of extreme value theory (in dimension
higher than 1) for pricing and hedging short-term out-of-the-money
options such as those involved in the definition of Daily Cliquet
Crash Puts.

Thu, 30 Nov 2017

14:00 - 15:00
L4

Error analysis for a diffuse interface approach to an advection-diffusion equation on a moving surface

Dr Vanessa Styles
(University of Sussex)
Abstract

We analyze a fully discrete numerical scheme for solving a parabolic PDE on a moving surface. The method is based on a diffuse interface approach that involves a level set description of the moving surface. Under suitable conditions on the spatial grid size, the time step and the interface width we obtain stability and error bounds with respect to natural norms. Test calculations are presented that confirm our analysis.

Thu, 30 Nov 2017

12:00 - 13:00
L4

McKean–Vlasov problems with contagion effects

Sean Ledger
(University of Bristol)
Abstract

I will introduce a McKean—Vlasov problem arising from a simple mean-field model of interacting neurons. The equation is nonlinear and captures the positive feedback effect of neurons spiking. This leads to a phase transition in the regularity of the solution: if the interaction is too strong, then the system exhibits blow-up. We will cover the mathematical challenges in defining, constructing and proving uniqueness of solutions, as well as explaining the connection to PDEs, integral equations and mathematical finance.

Wed, 29 Nov 2017
16:00
C5

Classifying Higgs bundles, stable and unstable

Eloise Hamilton
(Oxford University)
Abstract

 The aim of this talk is to describe the classification problem for Higgs bundles and to explain how a combination of classical and Non-Reductive Geometric Invariant Theory might be used to solve this classification problem.
 
I will start by defining Higgs bundles and their physical origins. Then, I will present the classification problem for Higgs bundles. This will involve introducing the "stack" of Higgs bundles, a purely formal object which allows us to consider all isomorphism classes of Higgs bundles at once. Finally, I will explain how the stack of Higgs bundles can be described geometrically. As we will see, the stack of Higgs bundles can be decomposed into disjoint strata, each consisting of Higgs bundles of a given "instability type". Both classical and Non-Reductive GIT can then be applied to obtain moduli spaces for each of the strata.

Wed, 29 Nov 2017
11:00
N3.12

The mystical field with one element

Alex Saad
Abstract

The “field with one element” is an interesting algebraic object that in some sense relates linear algebra with set theory. In a much deeper vein it is also expected to have a role in algebraic geometry that could potentially “lift" Deligne’s proof of the final Weil Conjecture for varieties over finite fields to a proof of the Riemann hypothesis for the Riemann zeta function. The only problem is that it doesn’t exist. In this highly speculative talk I will discuss some of these concepts, and focus mainly on zeta functions of algebraic varieties over finite fields. I will give a (very) brief sketch of how to interpret various zeta functions in a geometric context, and try to explain what goes wrong for the Riemann zeta function that makes this a difficult problem.

Tue, 28 Nov 2017

18:30 - 19:45

Andrew Wiles - Oxford Mathematics London Public Lecture SOLD OUT

Andrew Wiles
(University of Oxford)
Abstract

Oxford Mathematics Public Lectures - Andrew Wiles, 28th November, 6.30pm, Science Museum, London SW7 2DD

Oxford Mathematics in partnership with the Science Museum is delighted to announce its first Public Lecture in London. World-renowned mathematician Andrew Wiles will be our speaker. Andrew will be talking about his current work and will also be 'in conversation' with mathematician and broadcaster Hannah Fry after the lecture.

This lecture is now sold out, but it will be streamed live and recorded. https://livestream.com/oxuni/wiles
 

Tue, 28 Nov 2017
17:00
C1

Extension of suboperators and the generalized Schur complement

Tamas Titkos
(Alfréd Rényi Institute of Mathematics)
Abstract

Our long term plan is to develop a unified approach to prove decomposition theorems in different structures. In our anti-dual pair setting, it would be useful to have a tool which is analogous to the so-called Schur complementation. To this aim, I will present a suitable generalization of the classical known Krein - von Neumann extension.

Tue, 28 Nov 2017

16:00 - 17:00
C2

Applications of model theory to the study of Roelcke precompact groups and their actions ***Note change of room***

Todor Tsankov
(Institut de mathématiques de Jussieu)
Abstract

Roelcke precompact groups are exactly the topological groups that can be realized as automorphism groups of omega-categorical structures (in continuous logic). In this talk, I will discuss a model-theoretic framework for the study of those groups and their dynamical systems as well as two concrete applications. The talk is based on joint work with Itaï Ben Yaacov and Tomás Ibarlucía.

Tue, 28 Nov 2017

15:45 - 16:45
L4

Specialization of (stable) rationality

Evgeny Shinder
(Sheffield)
Abstract

The specialization question for rationality is the following one: assume that very general fibers of a flat proper morphism are rational, does it imply that all fibers are rational? I will talk about recent solution of this question in characteristic zero due to myself and Nicaise, and Kontsevich-Tschinkel. The method relies on a construction of various specialization morphisms for the Grothendieck ring of varieties (stable rationality) and the Burnside ring of varieties (rationality), which in turn rely on the Weak Factorization and Semi-stable Reduction Theorems.

Tue, 28 Nov 2017

14:30 - 15:00
L3

Shape optimization under overhang constraints imposed by additive manufacturing technologies

Charles Dapogny
(Laboratoire Jean Kuntzmann)
Abstract

The purpose of this work is to introduce a new constraint functional for shape optimization problems, which enforces the constructibility by means of additive manufacturing processes, and helps in preventing the appearance of overhang features - large regions hanging over void which are notoriously difficult to assemble using such technologies. The proposed constraint relies on a simplified model for the construction process: it involves a continuum of shapes, namely the intermediate shapes corresponding to the stages of the construction process where the total, final shape is erected only up to a certain level. The shape differentiability of this constraint functional is analyzed - which is not a standard issue because of its peculiar structure. Several numerical strategies and examples are then presented. This is a joint work with G. Allaire, R. Estevez, A. Faure and G. Michailidis.

Tue, 28 Nov 2017
14:15
L4

Dirac induction for rational Cherednik algebras

Marcelo De Martino
(Oxford University)
Abstract

In this joint work with D. Ciubotaru, we introduce the notion of local and global indices of Dirac operators for a rational Cherednik algebra H, with underlying reflection group G. In the local theory, I will report on some relations between the (local) Dirac index of a simple module in category O, the graded G-character and the composition series polynomials for standard modules. In the global theory, we introduce an "integral-reflection" module over which we define and compute the index of a (global) Dirac operator and show that the index is independent of the parameters. If time permits, I will discuss some local-global relations.

Tue, 28 Nov 2017

14:00 - 14:30
L3

Tomosynthesis with nonlinear compressed sensing

Raphael Hauser
(University of Oxford)
Abstract

A new generation of low cost 3D tomography systems is based on multiple emitters and sensors that partially convolve measurements. A successful approach to deconvolve the measurements is to use nonlinear compressed sensing models. We discuss such models, as well as algorithms for their solution. 

Tue, 28 Nov 2017

12:45 - 13:30
C5

Passive control of viscous flow via elastic snap-through

Michael Gomez
(Mathematical Institute)
Abstract

Snap-through buckling is a type of instability in which an elastic object rapidly jumps from one state to another, just as an umbrella flips upwards in a gust of wind. While snap-through under dry, mechanical loads has already been harnessed in engineering to generate fast motions between two states, the mechanisms underlying snapping in bulk fluid flows remain relatively unexplored. In this talk we demonstrate how elastic snap-through may be used to passively control fluid flows at low Reynolds number, in contrast to some pre-existing valves that rely on active control. We study viscous flow through a channel in which one of the bounding walls is an elastic arch. By performing experiments at the macroscopic scale, we show that snap-through of the arch rapidly changes the channel from a constricted to an unconstricted state, increasing the hydraulic conductivity by up to an order of magnitude. We also observe nonlinear pressure-flux characteristics away from snapping due to the coupling between the driving flow and elasticity. This behaviour is confirmed by a mathematical model that also shows the device may readily be scaled down for microfluidic applications. Finally, we demonstrate that such a device may be used to create a fluidic analogue of a fuse: the fluid flux through a channel may not rise above a given value. 

Tue, 28 Nov 2017

12:00 - 13:00
C3

A networks perspective on automation

Maria del Rio Chanona
(University of Oxford)
Abstract

Current technological progress has raised concerns about automation of tasks performed by workers resulting in job losses. Previous studies have used machine learning techniques to compute the automation probability of occupations and thus, studied the impact of automation on employment. However, such studies do not consider second-order effects, for example, an occupation with low automation probability can have a  surplus of labor supply due to similar occupations being automated. In this work, we study such second-order effects of automation using a network approach.  In our network – the Job Space – occupations are nodes and edges link occupations which share a significant amount of work activities. By mapping employment, automation probabilities into the network, and considering the movement of workers, we show that an occupation’s position in the network may be crucial to determining its employment future.

 

Tue, 28 Nov 2017

12:00 - 13:15
L4

Amplitude relations in Einstein-Yang-Mills theory

Dhritiman Nandan
(Edinburgh University)
Abstract

I will discuss recent developments in the study of scattering amplitudes in Einstein-Yang-Mills theory. At tree level we find new structures at higher order collinear limits and novel connections with amplitudes in Yang-Mills theory using the CHY formalism. Finally I will comment on unitarity based observations regarding one-loop amplitudes in the theory. 

Mon, 27 Nov 2017

16:00 - 17:00
L4

Homogenization of the eigenvalues of the Neumann-Poincaré operator

Charles Dapogny
(Universite Grenoble-Alpes)
Abstract

In this presentation, we investigate the spectrum of the Neumann-Poincaré operator associated to a periodic distribution of small inclusions with size ε, and its asymptotic behavior as the parameter ε vanishes. Combining techniques pertaining to the fields of homogenization and potential theory, we prove that the limit spectrum is composed of the `trivial' eigenvalues 0 and 1, and of a subset which stays bounded away from 0 and 1 uniformly with respect to ε. This non trivial part is the reunion of the Bloch spectrum, accounting for the collective resonances between collections of inclusions, and of the boundary layer spectrum, associated to eigenfunctions which spend a not too small part of their energies near the boundary of the macroscopic device. These results shed new light about the homogenization of the voltage potential uε caused by a given source in a medium composed of a periodic distribution of small inclusions with an arbitrary (possibly negative) conductivity a surrounded by a dielectric medium, with unit conductivity.

Mon, 27 Nov 2017
15:45
L6

SU(2)-cyclic surgeries and the pillowcase

Steven Sivek
(Imperial College)
Abstract

The cyclic surgery theorem of Culler, Gordon, Luecke, and Shalen implies that any knot in S^3 other than a torus knot has at most two nontrivial cyclic surgeries. In this talk, we investigate the weaker notion of SU(2)-cyclic surgeries on a knot, meaning surgeries whose fundamental groups only admit SU(2) representations with cyclic image. By studying the image of the SU(2) character variety of a knot in the “pillowcase”, we will show that if it has infinitely many SU(2)-cyclic surgeries, then the corresponding slopes (viewed as a subset of RP^1) have a unique limit point, which is a finite, rational number, and that this limit is a boundary slope for the knot. As a corollary, it follows that for any nontrivial knot, the set of SU(2)-cyclic surgery slopes is bounded. This is joint work with Raphael Zentner.

Mon, 27 Nov 2017

15:45 - 16:45
L3

Invariance principle for non-homogeneous random walks with anomalous recurrence properties

ALEKSANDAR MIJATOVIC
(King's College London)
Abstract

Abstract: In this talk we describe an invariance principle for a class of non-homogeneous martingale random walks in $\RR^d$ that can be recurrent or transient for any dimension $d$. The scaling limit, which we construct, is a martingale diffusions with law determined uniquely by an SDE with discontinuous coefficients at the origin whose pathwise uniqueness may fail. The radial component of the diffusion is a Bessel process of dimension greater than 1. We characterize the law of the diffusion, which must start at the origin, via its excursions built around the Bessel process: each excursion has a generalized skew-product-type structure, in which the angular component spins at infinite speed at the start and finish of each excursion. Defining a Riemannian metric $g$ on the sphere $S^{d−1}$, different from the one induced by the ambient Euclidean space, allows us to give an explicit construction of the angular component (and hence of the entire skew-product decomposition) as a time-changed Browninan motion with drift on the Riemannian manifold $(S^{d−1}, g)$. In particular, this provides a multidimensional generalisation of the Pitman–Yor representation of the excursions of Bessel process with dimension between one and two. Furthermore, the density of the stationary law of the angular component with respect to the volume element of $g$ can be characterised by a linear PDE involving the Laplace–Beltrami operator and the divergence under the metric $g$. This is joint work with Nicholas Georgiou and Andrew Wade.

Mon, 27 Nov 2017
14:30
L6

Homomorphism Thresholds For Graphs

Mathias Schacht
(Hamburg)
Abstract

The interplay of minimum degree and 'structural properties' of large graphs with a given forbidden subgraph is a central topic in extremal graph theory. For a given graph $F$ we define the homomorphism threshold as the infimum $\alpha$ such that every $n$-vertex $F$-free graph $G$ with minimum degree $>\alpha n$ has a homomorphic image $H$ of bounded size (independent of $n$), which is $F$-free as well. Without the restriction of $H$ being $F$-free we recover the definition of the chromatic threshold, which was determined for every graph $F$ by Allen et al. The homomorphism threshold is less understood and we present recent joint work with O. Ebsen on the homomorphism threshold for odd cycles.