Data structures for real multiparameter persistence modules
Abstract
This is the continuation of a discussion of Ezra Miller's paper https://arxiv.org/abs/1709.08155.
This is the continuation of a discussion of Ezra Miller's paper https://arxiv.org/abs/1709.08155.
I will talk about some recent work with Chantal David and Matilde Lalin about the mean value of L-functions associated to cubic characters over F_q[t] when q=1 (mod 3). I will explain how to obtain an asymptotic formula with a (maybe a little surprising) main term, which relies on using results from the theory of metaplectic Eisenstein series about cancellation in averages of cubic Gauss sums over functions fields.
A polymer, or microscopic elastic filament, is often modelled as a linear chain of rigid bodies interacting both with themselves and a heat bath. Then the classic notions of persistence length are related to how certain correlations decay with separation along the chain. I will introduce these standard notions in mathematical terms suitable for non specialists, and describe the standard results that apply in the simplest cases of wormlike chain models that have a straight, minimum energy (or ground or intrinsic) shape. Then I will introduce an appropriate splitting of a matrix recursion in the group SE(3) which deconvolves the distinct effects of stiffness and intrinsic shape in the more complicated behaviours of correlations that arise when the polymer is not intrinsically straight. The new theory will be illustrated by fully implementing it within a simple sequence-dependent rigid base pair model of DNA. In that particular context, the persistence matrix factorisation generalises and justifies the prior scalar notions of static and dynamic persistence lengths.
Our general theory, which encompasses two different aggregation properties (Neuberger, 2012; Bondarenko, 2014) establishes a wide variety of new, unbiased and efficient risk premia estimators. Empirical results on meticulously-constructed daily, investable, constant-maturity S&P500 higher-moment premia reveal significant, previously-undocumented, regime-dependent behavior. The variance premium is fully priced by Fama and French (2015) factors during the volatile regime, but has significant negative alpha in stable markets. Also only during stable periods, a small, positive but significant third-moment premium is not fully priced by the variance and equity premia. There is no evidence for a separate fourth-moment premium.
In micro-fluidics, at small scales where inertial effects become negligible, surface to volume ratios are large and the interfacial processes are extremely important for the overall dynamics. Integral
equation based methods are attractive for the simulations of e.g. droplet-based microfluidics, with tiny water drops dispersed in oil, stabilized by surfactants. In boundary integral formulations for
Stokes flow, jumps in pressure and velocity gradients are naturally taken care of, viscosity ratios enter only in coefficients of the equations, and only the drop surfaces must be discretized and not the volume inside nor in between.
We present numerical methods for drops with insoluble surfactants, both in two and three dimensions. We discretize the integral equations using Nyström methods, and special care is taken in the evaluation of singular and also nearly singular integrals that is needed in the case of close drop interactions. A spectral method is used to solve the advection-diffusion equation on each drop surface that describes the evolution of surfactant concentration. The drop velocity and surfactant concentration couple together through an equation of state for the surface tension coefficient. An adaptive time-stepping strategy is developed for the coupled problem, with the constraint to minimize the number of Stokes solves, since this is the computationally most expensive part.
For high quality discretization of the drops throughout the simulations, a hybrid method is used in two dimensions, offering an arc-length parameterization of the interface. In three dimensions, a
reparameterization procedure is developed to optimize the spherical harmonics representation of the drop, while conserving the drop volume and amount of surfactant.
We present results from some validation tests and illustrate the ability of the numerical methods in different challenging problems.
The basic mathematical models that describe the behavior of fluid flows date back to the eighteenth century, and yet many phenomena observed in experiments are far from being well understood from a theoretical viewpoint. For instance, especially challenging is the study of fundamental stability mechanisms when weak dissipative forces (generated, for example, by molecular friction) interact with advection processes, such as mixing and stirring. The goal of this talk is to have an overview on recent results on a variety of aspects related to hydrodynamic stability, such as the stability of vortices and laminar flows, the enhancement of dissipative force via mixing, and the statistical description of turbulent flows.
We will discuss topological and algebraic aspects of splittings of free groups. In particular we will look at the core of two splittings in terms of CAT(0) cube complexes and systems of surfaces in a doubled handlebody.
Multivariate cryptography is one of a handful of proposals for post-quantum cryptographic schemes, i.e. cryptographic schemes that are secure also against attacks carried on with a quantum computer. Their security relies on the assumption that solving a system of multivariate (quadratic) equations over a finite field is computationally hard.
Groebner bases allow us to solve systems of polynomial equations. Therefore, one of the key questions in assessing the robustness of multivariate cryptosystems is estimating how long it takes to compute the Groebner basis of a given system of polynomial equations.
After introducing multivariate cryptography and Groebner bases, I will present a rigorous method to estimate the complexity of computing a Groebner basis. This approach is based on techniques from commutative algebra and is joint work with Alessio Caminata (University of Barcelona).
About fifteen years ago, Thomas Scanlon and I gave a description of sets that arise as the intersection of a subvariety with a finitely generated subgroup inside a semiabelian variety over a finite field. Inspired by later work of Derksen on the positive characteristic Skolem-Mahler-Lech theorem, which turns out to be a special case, Jason Bell and I have recently recast those results in terms of finite automata. I will report on this work, as well as on the work-in-progress it has engendered, also with Bell, on an effective version of the isotrivial Mordell-Lang theorem.
Starting from the seminal paper of Caporaso-Harris-Mazur, it has been proved that if Lang's Conjecture holds in arbitrary dimension, then it implies a uniform bound for the number of rational points in a curve of general type and analogue results in higher dimensions. In joint work with Kenny Ascher we prove analogue statements for integral points (or more specifically stably-integral points) on curves of log general type and we extend these to higher dimensions. The techniques rely on very recent developments in the theory of moduli spaces for stable pairs, a higher dimensional analogue of pointed stable curves.
If time permits we will discuss how very interesting problems arise in dimension 2 that are related to the geometry of the log-cotangent bundle.
Please note that this seminar will take place at the Physical and Theoretical Chemistry Laboratory within the
Department of Chemistry, room, PTCL lecture theatre.
We give an alternative, statistical physics based proof of the Ω(d2^{-d}) lower bound for the maximum sphere packing density in dimension d by showing that a random configuration from the hard sphere model has this density in expectation. While the leading constant we achieve is not the best known, we do obtain additional geometric information: we prove a lower bound on the entropy density of sphere packings at this density, a measure of how plentiful such packings are. This is joint work with Felix Joos and Will Perkins.
Within the wide field of sparse approximation, convolutional sparse coding (CSC) has gained considerable attention in the computer vision and machine learning communities. While several works have been devoted to the practical aspects of this model, a systematic theoretical understanding of CSC seems to have been left aside. In this talk, I will present a novel analysis of the CSC problem based on the observation that, while being global, this model can be characterized and analyzed locally. By imposing only local sparsity conditions, we show that uniqueness of solutions, stability to noise contamination and success of pursuit algorithms are globally guaranteed. I will then present a Multi-Layer extension of this model and show its close relation to Convolutional Neural Networks (CNNs). This connection brings a fresh view to CNNs, as one can attribute to this architecture theoretical claims under local sparse assumptions, which shed light on ways of improving the design and implementation of these networks. Last, but not least, we will derive a learning algorithm for this model and demonstrate its applicability in unsupervised settings.
In this talk, we revisit the cubic regularization (CR) method for solving smooth non-convex optimization problems and study its local convergence behaviour. In their seminal paper, Nesterov and Polyak showed that the sequence of iterates of the CR method converges quadratically a local minimum under a non-degeneracy assumption, which implies that the local minimum is isolated. However, many optimization problems from applications such as phase retrieval and low-rank matrix recovery have non-isolated local minima. In the absence of the non-degeneracy assumption, the result was downgraded to the superlinear convergence of function values. In particular, they showed that the sequence of function values enjoys a superlinear convergence of order 4/3 (resp. 3/2) if the function is gradient dominated (resp. star-convex and globally non-degenerate). To remedy the situation, we propose a unified local error bound (EB) condition and show that the sequence of iterates of the CR method converges quadratically a local minimum under the EB condition. Furthermore, we prove that the EB condition holds if the function is gradient dominated or if it is star-convex and globally non-degenerate, thus improving the results of Nesterov and Polyak in three aspects: weaker assumption, faster rate and iterate instead of function value convergence. Finally, we apply our results to two concrete non-convex optimization problems that arise from phase retrieval and low-rank matrix recovery. For both problems, we prove that with overwhelming probability, the local EB condition is satisfied and the CR method converges quadratically to a global optimizer. We also present some numerical results on these two problems.
We study how the synchronizability of a diffusive network increases (or decreases) when we add some links in its underlying graph. This is of interest in the context of power grids where people want to prevent from having blackouts, or for neural networks where synchronization is responsible of many diseases such as Parkinson. Based on spectral properties for Laplacian matrices, we show some classification results obtained (with Tiago Pereira and Philipp Pade) with respect to the effects of these links.
Hardy's axiomatic approach to quantum theory revealed that just one axiom
distinguishes quantum theory from classical probability theory: there should
be continuous reversible transformations between any pair of pure states. It
is the single word `continuous' that gives rise to quantum theory. This
raises the question: Does there exist a finite theory of quantum physics
(FTQP) which can replicate the tested predictions of quantum theory to
experimental accuracy? Here we show that an FTQP based on complex Hilbert
vectors with rational squared amplitudes and rational phase angles is
possible providing the metric of state space is based on p-adic rather than
Euclidean distance. A key number-theoretic result that accounts for the
Uncertainty Principle in this FTQP is the general incommensurateness between
rational $\phi$ and rational $\cos \phi$. As such, what is often referred to
as quantum `weirdness' is simply a manifestation of such number-theoretic
incommensurateness. By contrast, we mostly perceive the world as classical
because such incommensurateness plays no role in day-to-day physics, and
hence we can treat $\phi$ (and hence $\cos \phi$) as if it were a continuum
variable. As such, in this FTQP there are two incommensurate Schr\"{o}dinger
equations based on the rational differential calculus: one for rational
$\phi$ and one for rational $\cos \phi$. Each of these individually has a
simple probabilistic interpretation - it is their merger into one equation
on the complex continuum that has led to such problems over the years. Based
on this splitting of the Schr\"{o}dinger equation, the measurement problem
is trivially solved in terms of a nonlinear clustering of states on $I_U$.
Overall these results suggest we should consider the universe as a causal
deterministic system evolving on a finite fractal-like invariant set $I_U$
in state space, and that the laws of physics in space-time derive from the
geometry of $I_U$. It is claimed that such a deterministic causal FTQP will
be much easier to synthesise with general relativity theory than is quantum
theory.
We discuss mathematical questions that play a fundamental role in quantitative analysis of incompressible viscous fluids and other incompressible media. Reliable verification of the quality of approximate solutions requires explicit and computable estimates of the distance to the corresponding generalized solution. In the context of this problem, one of the most essential questions is how to estimate the distance (measured in terms of the gradient norm) to the set of divergence free fields. It is closely related to the so-called inf-sup (LBB) condition or stability lemma for the Stokes problem and requires estimates of the LBB constant. We discuss methods of getting computable bounds of the constant and espective estimates of the distance to exact solutions of the Stokes, generalized Oseen, and Navier-Stokes problems.
One of the fundamental themes of geometric group theory is to
view finitely generated groups as geometric objects in their own right,
and to then understand to what extent the geometry of a group determines
its algebra. A theorem of Stallings says that a finitely generated group
has more than one end if and only if it splits over a finite subgroup.
In this talk, I will explain an analogous geometric characterisation of
when a group admits a splitting over certain classes of infinite subgroups.
The study of the Geometry of random nodal domains has attracted a lot of attention in the recent past, in particular due to their connection with famous conjectures such as Yau's conjecture on the nodal volume of eigenfunctions of the Laplacian on compact manifolds, and Berry's conjecture on the relation between the geometry of the nodal sets associated to these eigenfunctions and the geometry of the nodal sets associated to toric random waves.
At first, the randomness involved in the definition of random nodal domains is often chosen of Gaussian nature. This allows in particular the use of explicit techniques, such as Kac--Rice formula, to derive the asymptotics of many observables of interest (nodal volume, number of connected components, Leray's measure etc.). In this talk, we will raise the question of the universality of these asymptotics, which consists in deciding if the asymptotic properties of random nodal domains do or do not depend on the particular nature of the randomness involved. Among other results, we will establish the local and global universality of the asymptotic volume associated to the set of real zeros of random trigonometric polynomials with high degree.
(Joint work with Siva Athreya & Leonid Mytnik).
It is well known from the literature that ordinary differential equations (ODEs) regularize in the presence of noise. Even if an ODE is “very bad” and has no solutions (or has multiple solutions), then the addition of a random noise leads almost surely to a “nice” ODE with a unique solution. The first part of the talk will be devoted to SDEs with distributional drift driven by alpha-stable noise. These equations are not well-posed in the classical sense. We define a natural notion of a solution to this equation and show its existence and uniqueness whenever the drift belongs to a certain negative Besov space. This generalizes results of E. Priola (2012) and extends to the context of stable processes the classical results of A. Zvonkin (1974) as well as the more recent results of R. Bass and Z.-Q. Chen (2001).
In the second part of the talk we investigate the same phenomenon for a 1D heat equation with an irregular drift. We prove existence and uniqueness of the flow of solutions and, as a byproduct of our proof, we also establish path-by-path uniqueness. This extends recent results of A. Davie (2007) to the context of stochastic partial differential equations.
[1] O. Butkovsky, L. Mytnik (2016). Regularization by noise and flows of solutions for a stochastic heat equation. arXiv 1610.02553. To appear in Annal. Probab.
[2] S. Athreya, O. Butkovsky, L. Mytnik (2018). Strong existence and uniqueness for stable stochastic differential equations with distributional drift. arXiv 1801.03473.
I will talk about recent work, joint with M. Gröchenig and D. Wyss, on two related results involving the cohomology of moduli spaces of Higgs bundles. The first is a positive answer to a conjecture of Hausel and Thaddeus which predicts the equality of suitably defined Hodge numbers of moduli spaces of Higgs bundles with SL(n)- and PGL(n)-structure. The second is a new proof of Ngô's geometric stabilization theorem which appears in the proof of the fundamental lemma. I will give an introduction to these theorems and outline our argument, which, inspired by work of Batyrev, proceeds by comparing the number of points of these moduli spaces over finite fields via p-adic integration.
We study the spectrum of local operators living on a defect in a generic conformal field theory, and their coupling to the local bulk operators. We establish the existence of universal accumulation points in the spectrum at large s, s being the charge of the operators under rotations in the space transverse to the defect. Our main result is a formula that inverts the bulk to defect OPE, analogous to the Caron-Huot formula for the four-point function of CFTs without defects.
Yaolong Cao: Gauge Theories on Geometric Spaces
In this talk, I will very briefly discuss gauge theories on various geometric spaces, including Riemann surfaces, 4-manifolds and manifolds with special or exceptional holonomy. More details on Calabi-Yau 4-folds will be mentioned, which are related to my research interests.
Doireann O'Kiely: Dynamic Wrinkling of Elastic Sheets
Our lives contain many scenarios in which thin structures wrinkle: a piece of tin foil or cling film crumples in our hand, and creases form in our skin as we age. In this talk I will discuss experimental and theoretical work by researchers in the Mathematical Institute on wrinkling of elastic sheets.
We study the impact of a solid onto an elastic sheet floating at a liquid-air interface. We observe a wave that is reminiscent of the ripples caused by dropping a stone in a pond, as well as spoke-like wrinkles, whose wavelength evolves in time. We describe these phenomena using a combination of asymptotic analysis, numerical simulations and scaling arguments.
Numerical simulation provides an important contribution to the management of oil reservoirs, and the ‘reservoir simulator’ has been an essential tool for reservoir engineers since the 1970’s. I will describe the role of the ‘well model’ in reservoir simulation. Its main purpose is to determine the production and injection flows of the reservoir fluids at the surface under a variety of operating constraints, and to supply source and sink terms to the grid cells of the reservoir model.
Advances in well technology (horizontal, multilateral, and smart wells containing flow control devices) have imposed additional demands on the well model. It must allow the fluid mixture properties to vary with position in the well, and enable different fluid streams to comingle. Friction may make an important contribution to the local pressure gradient. To provide an improved representation of the physics of fluid flow, the well is discretised into a network of segments, where each segment has its own set of variables describing the multiphase flow conditions. Individual segments can be configured to represent flow control devices, accessing lookup tables or built-in correlations to determine the pressure drop across the device as a function of the flow conditions.
The ability to couple the wells to a production facility model such as a pipeline network is a crucial advantage for field development and optimization studies, particularly for offshore fields. I will conclude by comparing two techniques for combining a network model with the reservoir simulation. One method is to extend the simulator’s well model to include the network, providing a fully integrated reservoir/well/network simulation. The other method is to run the reservoir and facility models as separate simulations coupled by a ‘controller’, which periodically balances them by exchanging boundary conditions. The latter approach allows the engineer to use a choice of specialist facility simulators.