Tue, 13 Feb 2018

12:00 - 13:00
C3

The effects of structural perturbations on the dynamics of networks

Camille Poignard
(ICMC São Carlos)
Abstract

We study how the synchronizability of a diffusive network increases (or decreases) when we add some links in its underlying graph. This is of interest in the context of power grids where people want to prevent from having blackouts, or for neural networks where synchronization is responsible of many diseases such as Parkinson. Based on spectral properties for Laplacian matrices, we show some classification results obtained (with Tiago Pereira and Philipp Pade) with respect to the effects of these links.
 

Tue, 13 Feb 2018

12:00 - 13:15
L4

A Finite Theory of Quantum Physics

Tim Palmer
(Oxford Physics)
Abstract

Hardy's axiomatic approach to quantum theory revealed that just one axiom
distinguishes quantum theory from classical probability theory: there should
be continuous reversible transformations between any pair of pure states. It
is the single word `continuous' that gives rise to quantum theory. This
raises the question: Does there exist a finite theory of quantum physics
(FTQP) which can replicate the tested predictions of quantum theory to
experimental accuracy? Here we show that an FTQP based on complex Hilbert
vectors with rational squared amplitudes and rational phase angles is
possible providing the metric of state space is based on p-adic rather than
Euclidean distance. A key number-theoretic result that accounts for the
Uncertainty Principle in this FTQP is the general incommensurateness between
rational $\phi$ and rational $\cos \phi$. As such, what is often referred to
as quantum `weirdness' is simply a manifestation of such number-theoretic
incommensurateness. By contrast, we mostly perceive the world as classical
because such incommensurateness plays no role in day-to-day physics, and
hence we can treat $\phi$ (and hence $\cos \phi$) as if it were a continuum
variable. As such, in this FTQP there are two incommensurate Schr\"{o}dinger
equations based on the rational differential calculus: one for rational
$\phi$ and one for rational $\cos \phi$. Each of these individually has a

simple probabilistic interpretation - it is their merger into one equation
on the complex continuum that has led to such problems over the years. Based
on this splitting of the Schr\"{o}dinger equation, the measurement problem
is trivially solved in terms of a nonlinear clustering of states on $I_U$.
Overall these results suggest we should consider the universe as a causal
deterministic system evolving on a finite fractal-like invariant set $I_U$
in state space, and that the laws of physics in space-time derive from the
geometry of $I_U$. It is claimed that such a  deterministic causal FTQP will
be much easier to synthesise with general relativity theory than is quantum
theory.

Mon, 12 Feb 2018

16:00 - 17:00
L4

Estimates of the distance to the set of divergence free fields and applications to analysis of incompressible viscous flow problems

Sergey Repin
(University of Jyväskylä and Steklov Institute of Mathematics at St Petersburg)
Abstract

We discuss mathematical questions that play a fundamental role in quantitative analysis of incompressible viscous fluids and other incompressible media. Reliable verification of the quality of approximate solutions requires explicit and computable estimates of the distance to the corresponding generalized solution. In the context of this problem, one of the most essential questions is how to estimate the distance (measured in terms of the gradient norm) to the set of divergence free fields. It is closely related to the so-called inf-sup (LBB) condition or stability lemma for the Stokes problem and requires estimates of the LBB constant. We discuss methods of getting computable bounds of the constant and espective estimates of the distance to exact solutions of the Stokes, generalized Oseen, and Navier-Stokes problems.

Mon, 12 Feb 2018
15:45
L6

The coarse geometry of group splittings

Alexander Margolis
(Oxford)
Abstract

One of the fundamental themes of geometric group theory is to
view finitely generated groups as geometric objects in their own right,
and to then understand to what extent the geometry of a group determines
its algebra. A theorem of Stallings says that a finitely generated group
has more than one end if and only if it splits over a finite subgroup.
In this talk, I will explain an analogous geometric characterisation of
when a group admits a splitting over certain classes of infinite subgroups.

Mon, 12 Feb 2018

15:45 - 16:45
L3

Universality phenomena for random nodal domains.

JURGEN ANGST
(Rennes 1 Universite)
Abstract

The study of the Geometry of random nodal domains has attracted a lot of attention in the recent past, in particular due to their connection with famous conjectures such as Yau's conjecture on the nodal volume of eigenfunctions of the Laplacian on compact manifolds, and Berry's conjecture on the relation between the geometry of the nodal sets associated to these eigenfunctions and the geometry of the nodal sets associated to toric random waves.

At first, the randomness involved in the definition of random nodal domains is often chosen of Gaussian nature. This allows in particular the use of explicit techniques, such as Kac--Rice formula, to derive the asymptotics of many observables of interest (nodal volume, number of connected components, Leray's measure etc.). In this talk, we will raise the question of the universality of these asymptotics, which consists in deciding if the asymptotic properties of random nodal domains do or do not depend on the particular nature of the randomness involved. Among other results, we will establish the local and global universality of the asymptotic volume associated to the set of real zeros of random trigonometric polynomials with high degree.

 

Mon, 12 Feb 2018

14:15 - 15:15
L3

Regularization by noise and path-by-path uniqueness for SDEs and SPDEs.

OLEG BUTKOVSKY
(Technion Israel)
Abstract

(Joint work with Siva Athreya & Leonid Mytnik).

It is well known from the literature that ordinary differential equations (ODEs) regularize in the presence of noise. Even if an ODE is “very bad” and has no solutions (or has multiple solutions), then the addition of a random noise leads almost surely to a “nice” ODE with a unique solution. The first part of the talk will be devoted to SDEs with distributional drift driven by alpha-stable noise. These equations are not well-posed in the classical sense. We define a natural notion of a solution to this equation and show its existence and uniqueness whenever the drift belongs to a certain negative Besov space. This generalizes results of E. Priola (2012) and extends to the context of stable processes the classical results of A. Zvonkin (1974) as well as the more recent results of R. Bass and Z.-Q. Chen (2001).

In the second part of the talk we investigate the same phenomenon for a 1D heat equation with an irregular drift. We prove existence and uniqueness of the flow of solutions and, as a byproduct of our proof, we also establish path-by-path uniqueness. This extends recent results of A. Davie (2007) to the context of stochastic partial differential equations.

[1] O. Butkovsky, L. Mytnik (2016). Regularization by noise and flows of solutions for a stochastic heat equation. arXiv 1610.02553. To appear in Annal. Probab.

[2] S. Athreya, O. Butkovsky, L. Mytnik (2018). Strong existence and uniqueness for stable stochastic differential equations with distributional drift. arXiv 1801.03473.

Mon, 12 Feb 2018

14:15 - 15:15
L4

p-adic integration for the Hitchin fibration

Paul Ziegler
(Oxford)
Abstract

I will talk about recent work, joint with M. Gröchenig and D. Wyss, on two related results involving the cohomology of moduli spaces of Higgs bundles. The first is a positive answer to a conjecture of Hausel and Thaddeus which predicts the equality of suitably defined Hodge numbers of moduli spaces of Higgs bundles with SL(n)- and PGL(n)-structure. The second is a new proof of Ngô's geometric stabilization theorem which appears in the proof of the fundamental lemma. I will give an introduction to these theorems and outline our argument, which, inspired by work of Batyrev, proceeds by comparing the number of points of these moduli spaces over finite fields via p-adic integration.

 

Mon, 12 Feb 2018
12:45
L3

Universality at large transverse spin in defect CFT

Pedro Liendo
(DESY, Hamburg)
Abstract

We study the spectrum of local operators living on a defect in a generic conformal field theory, and their coupling to the local bulk operators. We establish the existence of universal accumulation points in the spectrum at large s, s being the charge of the operators under rotations in the space transverse to the defect. Our main result is a formula that inverts the bulk to defect OPE, analogous to the Caron-Huot formula for the four-point function of CFTs without defects.

 
Fri, 09 Feb 2018

16:00 - 17:00
L1

North meets South Colloquium

Yalong Cao and Doireann O'Kiely
Abstract

Yaolong Cao: Gauge Theories on Geometric Spaces
In this talk, I will very briefly discuss gauge theories on various geometric spaces, including Riemann surfaces, 4-manifolds and manifolds with special or exceptional holonomy. More details on Calabi-Yau 4-folds will be mentioned, which are related to my research interests.

Doireann O'Kiely: Dynamic Wrinkling of Elastic Sheets
Our lives contain many scenarios in which thin structures wrinkle: a piece of tin foil or cling film crumples in our hand, and creases form in our skin as we age. In this talk I will discuss experimental and theoretical work by researchers in the Mathematical Institute on wrinkling of elastic sheets.
We study the impact of a solid onto an elastic sheet floating at a liquid-air interface. We observe a wave that is reminiscent of the ripples caused by dropping a stone in a pond, as well as spoke-like wrinkles, whose wavelength evolves in time. We describe these phenomena using a combination of asymptotic analysis, numerical simulations and scaling arguments.
 

Fri, 09 Feb 2018

14:15 - 15:15
C3

Modelling wells in oil reservoir simulation

Jonathan Holmes
(ex Schlumberger)
Abstract

Numerical simulation provides an important contribution to the management of oil reservoirs, and the ‘reservoir simulator’ has been an essential tool for reservoir engineers since the 1970’s. I will describe the role of the ‘well model’ in reservoir simulation. Its main purpose is to determine the production and injection flows of the reservoir fluids at the surface under a variety of operating constraints, and to supply source and sink terms to the grid cells of the reservoir model.

 

Advances in well technology (horizontal, multilateral, and smart wells containing flow control devices) have imposed additional demands on the well model. It must allow the fluid mixture properties to vary with position in the well, and enable different fluid streams to comingle. Friction may make an important contribution to the local pressure gradient. To provide an improved representation of the physics of fluid flow, the well is discretised into a network of segments, where each segment has its own set of variables describing the multiphase flow conditions. Individual segments can be configured to represent flow control devices, accessing lookup tables or built-in correlations to determine the pressure drop across the device as a function of the flow conditions.

 

The ability to couple the wells to a production facility model such as a pipeline network is a crucial advantage for field development and optimization studies, particularly for offshore fields. I will conclude by comparing two techniques for combining a network model with the reservoir simulation. One method is to extend the simulator’s well model to include the network, providing a fully integrated reservoir/well/network simulation. The other method is to run the reservoir and facility models as separate simulations coupled by a ‘controller’, which periodically balances them by exchanging boundary conditions. The latter approach allows the engineer to use a choice of specialist facility simulators.

Fri, 09 Feb 2018

13:00 - 14:00
L6

State constrained optimal control problems via reachability approach.

Athena Picarelli
((Imperial College, London))
Abstract

This work deals with a class of stochastic optimal control problems in the presence of state constraints. It is well known that for such problems the value function is, in general, discontinuous, and its characterisation by a Hamilton-Jacobi equation requires additional assumptions involving an interplay between the boundary of the set of constraints and the dynamics
of the controlled system. Here, we give a characterization of the epigraph of the value function without assuming the usual controllability assumptions. To this end, the stochastic optimal control problem is first translated into a state-constrained stochastic target problem. Then a level-set approach is used to describe the backward reachable sets of the new target problem. It turns out that these backward reachable sets describe the value function. The main advantage of our approach is that it allows us to easily handle the state constraints by an exact penalisation. However, the target problem involves a new state variable and a new control variable that is unbounded.
 

Thu, 08 Feb 2018
16:00
L6

Serre's uniformity question and the Chabauty-Kim method

Netan Dogra
(Imperial College, London)
Abstract

Serre's uniformity question concerns the possible ways the Galois group of Q can act on the p-torsion of an elliptic curve over Q. In this talk I will survey what is known about this question, and describe two recent results related to the Chabauty-Kim method. The first, which is joint work with Jennifer Balakrishnan, Steffen Muller, Jan Tuitman and Jan Vonk, completes the classification of elliptic curves over Q with split Cartan level structure. The second, which is work in progress with Samuel Le Fourn, Samir Siksek and Jan Vonk, concerns the applicability of the Chabauty-Kim method in determining the elliptic curves with non-split Cartan level structure.
 

Thu, 08 Feb 2018
16:00
C5

Symplectic reduction and geometric invariant theory

Maxence Mayrand
(Oxford University)
Abstract

I will explain a beautiful link between differential and algebraic geometry, called the Kempf-Ness Theorem, which says that the natural notions of "quotient spaces" in the symplectic and algebraic categories can often be identified. The result will be presented in its most general form where actions are not necessarily free and hence I will also introduce the notion of stratified spaces.

Thu, 08 Feb 2018

16:00 - 17:30
L3

Magnetocapillary interactions for self-assembling swimmers and rotators

Nicolas Vandewalle
(University of Liege)
Abstract

When soft ferromagnetic particles are suspended at air-water interfaces in the presence of a vertical magnetic field, dipole-dipole repulsion competes with capillary attraction such that 2d structures self-assemble. The complex arrangements of such floating bodies are emphasized. The equilibrium distance between particles exhibits hysteresis when the applied magnetic field is modified. Irreversible processes are evidenced. By adding a horizontal and oscillating magnetic field, periodic deformations of the assembly are induced. We show herein that collective particle motions induce locomotion at low Reynolds number. The physical mechanisms and geometrical ingredients behind this cooperative locomotion are identified. These physical mechanisms can be exploited to much smaller scales, offering the possibility to create artificial and versatile microscopic swimmers.

Moreover, we show that it is possible to generate complex structures that are able to capture particles, perform cargo transport, fluid mixing, etc.

Thu, 08 Feb 2018

16:00 - 17:00
L4

Computational Aspects of Robust Optimized Certainty Equivalent

Samuel Drapeau
(Shanghai Advanced Institute of Finance)
Abstract

An extension of the expected shortfall as well as the value at risk to
model uncertainty has been proposed by P. Shige.
In this talk we will present a systematic extension of the general
class of optimized certainty equivalent that includes the expected
shortfall.
We show that its representation can be simplified in many cases for
efficient computations.
In particular we present some result based on a probability model
uncertainty derived from some Wasserstein metric and provide explicit
solution for it.
We further study the duality and representation of them.

This talk is based on a joint work with Daniel Bartlxe and Ludovic
Tangpi

Thu, 08 Feb 2018
15:00
L4

Non-existence and Non-uniqueness in the Kinetic Theory of Non-spherical Particles

Mark Wilkinson
(Heriot-Watt University, Edinburgh)
Abstract

The Boltzmann equation is a well-studied PDE that describes the statistical evolution of a dilute gas of spherical particles. However, much less is known — both from the physical and mathematical viewpoints — about the Boltzmann equation for non-spherical particles. In this talk, we present some new results on the non-existence and non-uniqueness of weak solutions to the initial-boundary value problem for N non-spherical particles which have importance for the Boltzmann equation.

We present work which was done jointly with L. Saint-Raymond (ENS Lyon), and also with P. Palffy-Muhoray (Kent State), E. Virga (Pavia) and X. Zheng (Kent State).

Wed, 07 Feb 2018

17:00 - 18:00
L1

Michael Bonsall - Scaling the Maths of Life

Michael Bonsall
(University of Oxford)
Abstract

In this talk Michael Bonsall will explore how we can use mathematics to link between scales of organisation in biology. He will delve in to developmental biology, ecology and neurosciences, all illustrated and explored with real life examples, simple games and, of course, some neat maths.

Michael Bonsall is Professor of Mathematical Biology in Oxford.

7 February 2018, 5pm-6pm, Mathematical Institute, Oxford

Please email @email to register or watch online: https://livestream.com/oxuni/bonsall

Wed, 07 Feb 2018

16:00 - 17:00
C5

Flats in CAT(0) spaces

Sam Shepherd
(University of Oxford)
Abstract

CAT(0) spaces are defined as having triangles that are no fatter than Euclidean triangles, so it is no surprise that under special conditions  you find pieces of the Euclidean plane appearing in CAT(0) spaces. What is surprising though is how weak these special conditions seem to be. I will present some well known results of this phenomenon, along with detailed sketch proofs.

Wed, 07 Feb 2018
15:00
L4

Efficient post-quantum crypto from module lattices

Peter Schwabe
(Radboud University)
Abstract

Large parts of the cryptography in use today,

key-agreement protocols and digital signatures based on the

hardness of factoring large integers or solving the

discrete-logarithm problem, are not secure against attackers

equipped with a large universal quantum computer. It is not

clear when such a large quantum computer will be built, but

continuous progress by various labs around the world suggests

that it may well be less than two decades until today's

cryptography will become insecure.

To address this issue, NIST started a public competition to

identify suitable replacements for today's cryptosystems. In

my talk, I will describe two of these systems: the

key-encapsulation mechanism Kyber and the digital signature

scheme Dilithium. Both schemes are based on the hardness of

solving problems in module lattices and they together form the

"Cryptographic Suite for Algebraic Lattices -- CRYSTALS".

Tue, 06 Feb 2018
16:00
L5

Joint NT/LO seminar: Counting lattice points and O-minimal structures

Fabrizio Barroero
(University of Basel)
Abstract

Let L be a lattice in R^n and let Z in R^(m+n) a parameterized family of subsets Z_T of R^n. Starting from an old result of Davenport and using O-minimal structures, together with Martin Widmer, we proved for fairly general families Z an estimate for the number of points of L in Z_T, which is essentially best possible.
After introducing the problem and stating the result, we will present applications to counting algebraic integers of bounded height and to Manin’s Conjecture.

Tue, 06 Feb 2018

16:00 - 17:00
L5

Counting lattice points and O-minimal structures

Fabrizio Barroero
(University of Basle)
Abstract

Let L be a lattice in R^n and let Z in R^(m+n) a parameterized family of subsets Z_T of R^n. Starting from an old result of Davenport and using O-minimal structures, together with Martin Widmer, we proved for fairly general families Z an estimate for the number of points of L in Z_T, which is essentially best possible. 
After introducing the problem and stating the result, we will present applications to counting algebraic integers of bounded height and to Manin’s Conjecture.

Tue, 06 Feb 2018

14:30 - 15:00
L5

The number of distinct eigenvalues of a matrix after perturbation

Patrick Farrell
(Oxford University)
Abstract


The question of what happens to the eigenvalues of a matrix after an additive perturbation has a long history, with notable contributions from Wilkinson, Sorensen, Golub, H\"ormander, Ipsen and Mehrmann, among many others. If the perturbed matrix $C \in \mathbb{C}^{n \times n}$ is given by $C = A + B$, these theorems typically consider the case where $A$ and/or $B$ are symmetric and $B$ has rank one. In this talk we will prove a theorem that bounds the number of distinct eigenvalues of $C$ in terms of the number of distinct eigenvalues of $A$, the diagonalisability of $A$, and the rank of $B$. This new theorem is more general in that it applies to arbitrary matrices $A$ perturbed by matrices of arbitrary rank $B$. We will also discuss various refinements of my bound recently developed by other authors.