Wed, 01 Feb 2017
15:00

Code Based Cryptography using different Metrics

Joachim Rosenthal
(University of Zurich)
Abstract

Code based Cryptography had its beginning in 1978 when Robert McEliece
demonstrated how the hardness of decoding a general linear code up to
half the minimum distance can be used as the basis for a public key
crypto system.  At the time the proposed system was not implemented in
practice as the required public key was relatively large.

With the realization that a quantum computer would make many
practically used systems obsolete coding based systems became an
important research subject in the area of post-quantum cryptography.
In this talk we will provide an overview to the subject.

In addition  we will report on recent results where the underlying
code is a disguised Gabidulin code or more generally a subspace
code and where the distance measure is the rank metric respecively the
subspace distance.
 

Wed, 01 Feb 2017

11:00 - 12:30
N3.12

General Amalgamation Theory

Felix Weitkaemper
(Univesity of Oxford)
Abstract

This talk will be on general amalgamation theory, covering ground from the 1950s to original research, with applications and examples from many different areas of mathematics and ranging from classical results to open problems.

Tue, 31 Jan 2017
17:00
C1

Some spectral results for photonic crystal waveguides

Ian Wood
(Kent)
Abstract

 

We study a spectral problem which is related to the propagation of electromagnetic waves in photonic crystal waveguides. The waveguide is created by introducing a linear defect into a periodic medium. The defect is infinitely extended and aligned with one of the coordinate axes. Under certain geometrical assumptions, the underlying Maxwell operator reduces to an elliptic operator and we study the effect of the perturbation by the waveguide on its spectrum. We show that the perturbation introduces guided mode spectrum inside the band gaps of the fully periodic, unperturbed spectral problem and use variational arguments to prove that guided mode spectrum can be created by arbitrarily small perturbations.

Tue, 31 Jan 2017

15:45 - 16:45
L4

Universal flops and noncommutative algebras

Joe Karmazyn
(Sheffield)
Abstract

A classification of simple flops on smooth threefolds in terms of the length invariant was given by Katz and Morrison, who showed that the length must take the value 1,2,3,4,5, or 6. This classification was produced by understanding simultaneous (partial) resolutions that occur in the deformation theory of A, D, E Kleinian surface singularities. An outcome of this construction is that all simple threefold flops of length l occur by pullback from a "universal flop" of length l. Curto and Morrison understood the universal flops of length 1 and 2 using matrix factorisations. I aim to describe how these universal flops can understood for lengths >2 via noncommutative algebra.

Tue, 31 Jan 2017
14:30
L6

Increasing Sequences of Integer Triples

Jason Long
(Cambridge University)
Abstract

We will consider the following deceptively simple question, formulated recently by Po Shen Loh who connected it to an open problem in Ramsey Theory. Define the '2-less than' relation on the set of triples of integers by saying that a triple x is 2-less than a triple y if x is less than y in at least two coordinates. What is the maximal length of a sequence of triples taking values in {1,...,n} which is totally ordered by the '2-less than' relation?

In his paper, Loh uses the triangle removal lemma to improve slightly on the trivial upper bound of n^2, and conjectures that the truth should be of order n^(3/2). The gap between these bounds has proved to be surprisingly resistant. We shall discuss joint work with Tim Gowers, giving some developments towards this conjecture and a wide array of natural extensions of the problem. Many of these extensions remain open.
 

Tue, 31 Jan 2017
14:30
L5

Sync-Rank: Robust ranking, constrained ranking and rank aggregation via eigenvector and SDP synchronization

Mihai Cucuringu
(University of Oxford)
Abstract

We consider the classic problem of establishing a statistical ranking of a set of n items given a set of inconsistent and incomplete pairwise comparisons between such items. Instantiations of this problem occur in numerous applications in data analysis (e.g., ranking teams in sports data), computer vision, and machine learning. We formulate the above problem of ranking with incomplete noisy information as an instance of the group synchronization problem over the group SO(2) of planar rotations, whose usefulness has been demonstrated in numerous applications in recent years. Its least squares solution can be approximated by either a spectral or a semidefinite programming (SDP) relaxation, followed by a rounding procedure. We perform extensive numerical simulations on both synthetic and real-world data sets (Premier League soccer games, a Halo 2 game tournament and NCAA College Basketball games) showing that our proposed method compares favorably to other algorithms from the recent literature.

We propose a similar synchronization-based algorithm for the rank-aggregation problem, which integrates in a globally consistent ranking pairwise comparisons given by different rating systems on the same set of items. We also discuss the problem of semi-supervised ranking when there is available information on the ground truth rank of a subset of players, and propose an algorithm based on SDP which recovers the ranks of the remaining players. Finally, synchronization-based ranking, combined with a spectral technique for the densest subgraph problem, allows one to extract locally-consistent partial rankings, in other words, to identify the rank of a small subset of players whose pairwise comparisons are less noisy than the rest of the data, which other methods are not able to identify. 
 

Tue, 31 Jan 2017
14:00
L5

Interpolation and quadrature in perturbed points

Nick Trefethen
(Mathematical Institute)
Abstract

The trigonometric interpolants to a periodic function in equispaced points converge if is Dini-continuous, and the associated quadrature formula, the trapezoidal rule, converges if is continuous.  What if the points are perturbed?  Amazingly little has been done on this problem, or on its algebraic (i.e. nonperiodic) analogue.  I will present new results joint with Anthony Austin which show some surprises.

 

Mon, 30 Jan 2017

16:00 - 17:00
C3

Cohomology of Varieties

Alex Torzewski
(Dept. Mathematics, University of Warwick)
Abstract

We outline what we expect from a good cohomology theory and introduce some of the most common cohomology theories. We go on to discuss what properties each should encode and detail attempts to fit them into a common framework. We build evidence for this viewpoint through several worked number theoretic examples and explain how many of the key conjectures in number theory fit into this theory of motives.

Mon, 30 Jan 2017

16:00 - 17:00
L4

Stable surfaces with constant mean curvature in 3-manifolds admitting a Killing vector field

Miguel Manzano
(King's College)
Abstract

In this talk we will discuss some properties of Schrödinger operators on parabolic manifolds, and particularize them to study the stability operator of a parabolic surface with constant mean curvature immersed in a 3-manifold that admits a Killing vector field. As an application, we will determine the range of values of H such that some homogeneous 3-manifolds admit complete parabolic stable surfaces with constant mean curvature H. Time permitting, we will also discuss some related area and first-eigenvalue estimates for the stability operator of constant mean curvature graphs in such 3-manifolds.

Mon, 30 Jan 2017

15:45 - 16:45
L3

Multi-scale analysis of wave propagation and imaging in random

JOSSELIN GARNIER
(Ecole Polytechnique)
Abstract

Wave propagation in random media can be studied by multi-scale and stochastic analysis. We first consider the direct problem and show that, in a physically relevant regime of separation of scales, wave propagation is governed by a Schrodinger-type equation driven by a Brownian field. We study the associated moment equations and clarify the propagation of coherent and incoherent waves. Second, using these new results we design original methods for sensor array imaging when the medium is randomly scattering and apply them to seismic imaging and ultrasonic testing of concrete.

Mon, 30 Jan 2017

14:15 - 15:15
L3

Scaling limits for randomly trapped random walks

BEN HAMBLY
(University of Oxford)
Abstract

A randomly trapped random walk on a graph is a simple continuous time random walk in which the holding time at a given vertex is an independent sample from a probability measure determined by the trapping landscape, a collection of probability measures indexed by the vertices.

This is a time change of the simple random walk. For the constant speed continuous time random walk, the landscape has an exponential distribution with rate 1 at each vertex. For the Bouchaud trap model it has an exponential random variable at each vertex but where the rate for the exponential is chosen from a heavy tailed distribution. In one dimension the possible scaling limits are time changes of Brownian motion and include the fractional kinetics process and the Fontes-Isopi-Newman (FIN) singular diffusion. We extend this analysis to put these models in the setting of resistance forms, a framework that includes finitely ramified fractals. In particular we will construct a FIN diffusion as the limit of the Bouchaud trap model and the random conductance model on fractal graphs. We will establish heat kernel estimates for the FIN diffusion extending what is known even in the one-dimensional case.

 

           

Mon, 30 Jan 2017

14:15 - 15:15
L4

Quivers, Dessins and Calabi-Yau

Yang-hui He
(City University London)
Abstract

We discuss how bipartite graphs on Riemann surfaces encapture a wealth of information about the physics and the mathematics of gauge theories. The
correspondence between the gauge theory, the underlying algebraic geometry of its space of vacua, the combinatorics of dimers and toric varieties, as
well as the number theory of dessin d'enfants becomes particularly intricate under this light.

Mon, 30 Jan 2017

12:45 - 13:45
L3

Automorphic String Amplitudes

Henrik Gustafsson
(Goteborg)
Abstract

Automorphic forms arise naturally when studying scattering amplitudes in toroidal compactifications of string theory. In this talk, I will summarize the conditions on four-graviton amplitudes from the literature required by U-duality, supersymmetry and string perturbation theory, which are satisfied by certain Eisenstein series on exceptional Lie groups. Physical information, such as instanton effects, are encoded in their Fourier coefficients on parabolic subgroups, which are, in general, difficult to compute. I will demonstrate a method for evaluating certain Fourier coefficients of interest in string theory. Based on arXiv:1511.04265, arXiv:1412.5625 and work in progress.
 

 
Fri, 27 Jan 2017
16:00
L1

Mathematics and Auction Design

Paul Klemperer
(University of Oxford)
Abstract

Mathematical methods are increasingly being used to design auctions. Paul Klemperer will talk about some of his own experience which includes designing the U.K.'s mobile phone licence auction that raised £22.5 billion, and a new auction that helped the Bank of England in the financial crisis. (The then-Governor, Mervyn King, described it as "a marvellous application of theoretical economics to a practical problem of vital importance".) He will also discuss further development of the latter auction using convex and "tropical" geometric methods.

Fri, 27 Jan 2017
14:15
C3

Moffatt eddies in valleys beneath ice sheets

Colin Meyer
(Harvard University)
Abstract

Radar data from both Greenland and Antarctica show folds and other disruptions to the stratigraphy of the deep ice. The mechanisms by which stratigraphy deforms are related to the interplay between ice flow and topography. Here we show that when ice flows across valleys or overdeepenings, viscous overturnings called Moffatt eddies can develop. At the base of a subglacial valley, the shear on the valley walls is transfered through the ice, forcing the ice to overturn. To understand the formation of these eddies, we numerically solve the non-Newtonian Stokes equations with a Glen's law rheology to determine the critical valley angle for the eddies to form. The decrease in ice viscosity with shear enhances shear localization and, therefore, Moffatt eddies form in smaller valley angles (steeper slopes) than in a fluid that does not localize shear, such as a Newtonian fluid. When temperature is incorporated into the ice rheology, the warmer basal ice is less viscous and eddies form in larger valley angles (shallower slopes) than in isothermal ice. We apply our simulations to the Gamburtsev Subglacial Mountains and solve for the ice flow over radar-determined topography. These simulations show Moffatt eddies on the order of 100 meters tall in the deep subglacial valleys.

Fri, 27 Jan 2017

13:00 - 14:00
L6

Pointwise Arbitrage Pricing Theory in Discrete Time

Jan Obloj
(Oxford University)
Abstract


We pursue robust approach to pricing and hedging in mathematical
finance. We develop a general discrete time setting in which some
underlying assets and options are available for dynamic trading and a
further set of European options, possibly with varying maturities, is
available for static trading. We include in our setup modelling beliefs by
allowing to specify a set of paths to be considered, e.g.
super-replication of a contingent claim is required only for paths falling
in the given set. Our framework thus interpolates between
model-independent and model-specific settings and allows to quantify the
impact of making assumptions. We establish suitable FTAP and
Pricing-Hedging duality results which include as special cases previous
results of Acciaio et al. (2013), Burzoni et al. (2016) as well the
Dalang-Morton-Willinger theorem. Finally, we explain how to treat further
problems, such as insider trading (information quantification) or American
options pricing.
Based on joint works with Burzoni, Frittelli, Hou, Maggis; Aksamit, Deng and Tan.
 

Fri, 27 Jan 2017

11:45 - 12:45
L4

InFoMM CDT Group Meeting

Lindon Roberts, Fabian Ying, Ben Sloman
(Mathematical Institute)
Thu, 26 Jan 2017
17:30
L6

Existentially definable henselian valuation rings with p-adic residue fields

Arno Fehm
(Manchester)
Abstract

In joint work with Sylvy Anscombe we had found an abstract
valuation theoretic condition characterizing those fields F for which
the power series ring F[[t]] is existentially 0-definable in its
quotient field F((t)). In this talk I will report on recent joint work
with Sylvy Anscombe and Philip Dittmann in which the study of this
condition leads us to some beautiful results on the border of number
theory and model theory. In particular, I will suggest and apply a
p-adic analogue of Lagrange's Four Squares Theorem.

Thu, 26 Jan 2017

16:00 - 17:00
C5

The Loop Theorem of Papakyriakopoulos

Gareth Wilkes
((Oxford University))
Abstract

The study of 3-manifolds is founded on the strong connection between algebra and topology in dimension three. In particular, the sine qua non of much of the theory is the Loop Theorem, stating that for any embedding of a surface into a 3-manifold, a failure to be injective on the fundamental group is realised by some genuine embedding of a disc. I will discuss this theorem and give a proof of it.

Thu, 26 Jan 2017

16:00 - 17:00
L3

Flux-dependent graphs for metabolic networks

Mariano Beguerisse Díaz
(University of Oxford)
Abstract

Cells adapt their metabolic state in response to changes in the environment.  I will present a systematic framework for the construction of flux graphs to represent organism-wide metabolic networks.  These graphs encode the directionality of metabolic fluxes via links that represent the flow of metabolites from source to target reactions.  The weights of the links have a precise interpretation in terms of probabilities or metabolite flow per unit time. The methodology can be applied both in the absence of a specific biological context, or tailored to different environmental conditions by incorporating flux distributions computed from constraint-based modelling (e.g., Flux-Balance Analysis). I will illustrate the approach on the central carbon metabolism of Escherichia coli, revealing drastic changes in the topological and community structure of the metabolic graphs, which capture the re-routing of metabolic fluxes under each growth condition.

By integrating Flux Balance Analysis and tools from network science, our framework allows for the interrogation of environment-specific metabolic responses beyond fixed, standard pathway descriptions.

Thu, 26 Jan 2017

16:00 - 17:00
L6

CANCELED: Wach modules, regulator maps, and ε-isomorphisms in families

Otmar Venjakob
(Heidelberg)
Abstract

In this talk on joint work with REBECCA BELLOVIN we discuss the “local ε-isomorphism” conjecture of Fukaya and Kato for (crystalline) families of G_{Q_p}-representations. This can be regarded as a local analogue of the global Iwasawa main conjecture for families, extending earlier work of Kato for rank one modules, of Benois and Berger for crystalline representations with respect to the cyclotomic extension as well as of Loeffler, Venjakob and Zerbes for crystalline representations with respect to abelian p-adic Lie extensions of Q_p. Nakamura has shown Kato’s - conjecture for (ϕ,\Gamma)-modules over the Robba ring, which means in particular only after inverting p, for rank one and trianguline families. The main ingredient of (the integrality part of) the proof consists of the construction of families of Wach modules generalizing work of Wach and Berger and following Kisin’s approach via a corresponding moduli space.