Fri, 29 Apr 2016

16:00 - 17:00
L1

InFoMM CDT Annual Lecture

Professor Chris Budd
(University of Bath)
Abstract

Some models for climate change, the good the bad and the ugly

Modelling climate presents huge challenges for mathematicians and scientists, and has a large effect on policy makers.  Climate models themselves vary from simple to complex with a huge range in between.  But how good and/or reliable are they?

In this talk I will describe some of the various mathematical models of climate that are both used to understand past climate and also to predict future climate.  I will also try to show that an understanding of non-smooth effects in dynamical systems can give us useful insights into the behaviour and analysis of these models.

Fri, 29 Apr 2016
12:00
L6

Prandtl equations in Sobolev Spaces

Tong Yang
(City University of Hong Kong)
Abstract
The classical result of Oleinik and her collaborators in 1960s on the Prandtl equations shows that in two space dimensions, the monotonicity condition on the tangential component of the velocity field in the normal direction yields local in time well-posedness of the system. Recently, the well-posedness of Prandtl equations in Sobolev spaces has also been obtained under the same monotonicity condition. Without this monotonicity condition, it is well expected that boundary separation will be developed. And the work of Gerard-Varet and Dormy gives the ill-posedness, in particular in Sobolev spaces, of the linearized systemaround a shear flow with a non-degenerate critical point under when the boundary layer tends to the Euler flow exponentially in the normal direction. In this talk, we will first show that this exponential decay condition is not necessary and then in some sense it shows that the monotonicity condition is sufficient and necessary for the well-posedness of the Prandtl equations in two space dimensions in Sobolev spaces. Finally, we will discuss the problem in three space dimensions.
Fri, 29 Apr 2016

11:00 - 13:00
C2

Introduction to Beilinson's approach to p-adic Hodge theory

Tamas Szamuely
(Alfréd Rényi Institute of Mathematics)
Abstract

This is an introduction to the article 

A. Beilinson, p-adic periods and derived de Rham cohomology, J. Amer. Math. Soc. 25 (2012), no. 3, 715--738.

 

Thu, 28 Apr 2016
16:00
L6

From Sturm, Sylvester, Witt and Wall to the present day

Andrew Ranicki
(University of Edinburgh)
Abstract

The talk will be based on some of the material in the joint survey with Etienne Ghys

"Signatures in algebra, topology and dynamics"

http://arxiv.org/abs/1512.092582

In the 19th century Sturm's theorem on the number of roots of a real polynomial motivated Sylvester to define the signature of a quadratic form. In the 20th century the classification of quadratic forms over algebraic number fields motivated Witt to introduce the "Witt groups" of stable isomorphism classes of quadratic forms over arbitrary fields. Still in the 20th century the study of high-dimensional topological manifolds with nontrivial fundamental group motivated Wall to introduce the "Wall groups" of stable isomorphism classes of quadratic forms over arbitrary rings with involution. In our survey we interpreted Sturm's theorem in terms of the Witt-Wall groups of function fields. The talk will emphasize the common thread running through this developments, namely the notion of the localization of a ring inverting elements. More recently, the Cohn localization of inverting matrices over a noncommutative ring has been applied to topology in the 21st century, in the context of the speaker's algebraic theory of surgery.

 

Thu, 28 Apr 2016

16:00 - 17:30
L4

Branching diffusion representation of semilinear PDEs and Monte Carlo approximation

Xiaolu Tan
(Paris Dauphine University)
Abstract

We provide a representation result of parabolic semi-linear PDEs, with polynomial nonlinearity, by branching diffusion processes. We extend the classical representation for KPP equations, introduced by Skorokhod (1964), Watanabe (1965) and McKean (1975), by allowing for polynomial nonlinearity in the pair (u,Du), where u is the solution of the PDE with space gradient Du. Similar to the previous literature, our result requires a non-explosion condition which restrict to "small maturity" or "small nonlinearity" of the PDE. Our main ingredient is the automatic differentiation technique as in Henry Labordere, Tan and Touzi (2015), based on the Malliavin integration by parts, which allows to account for the nonlinearities in the gradient. As a consequence, the particles of our branching diffusion are marked by the nature of the nonlinearity. This new representation has very important numerical implications as it is suitable for Monte Carlo simulation.

Thu, 28 Apr 2016

16:00 - 17:00
L3

Mathematics and Molecular Biology: The Engineering Approach

Bob Eisenberg
(Rush University)
Abstract

Life is different because it is inherited. All life comes from a blueprint (genes) that can only make proteins. Proteins are studied by more than one hundred thousand scientists and physicians every day because they are so important in health and disease. The function of proteins is on the macroscopic scale, but atomic details control that function, as is shown in a multitude of experiments. The structure of proteins is so important that governments spend billions studying them. Structures are known in exquisite detail determined by crystallographic measurement of more than 105 different proteins. But the forces that govern the movement and function of proteins are not visible in the structure. Mathematics is needed to compute both function and forces so comparison with experiment can be made. Experiments report numbers, typically sets of numbers in the form of graphs. Verbal models, however beautifully written in the biological tradition, do not provide numerical outputs, and so it is difficult to tell which verbal model better fits data.

The mathematics of molecular biology must be multiscale because atomic details control macroscopic function. The device approach of the engineering and English physiological tradition provides the dimensional reduction needed to solve the multiscale problem. Mathematical analysis of hundreds of experiments (reported in some fifty papers) has been successful in showing how some properties of an important class of proteins—ion channels— work. Ion channels are natural nanovalves as important to animals as Field Effect Transistors (FETs) are to computers. I will present the Fermi Poisson approach started by Jinn Liang Liu. The Fermi distribution is used to describe the saturation of space produced by crowded spherical ions. The Poisson equation (and continuity of current) is used to describe long range electrodynamics. Short range correlations are approximated by the Santangelo equation. A fully consistent mathematical description reproduces macroscopic properties of bulk solutions of sodium and calcium chloride solutions. It also describes several different channels (with quite different atomic detailed structures) quite well in a wide range of conditions using a handful of parameters never changed. It is not clear why the model works as well it does, nor is it clear how well the model will work on other channels, transporters or proteins.

Thu, 28 Apr 2016

14:00 - 15:00
L5

Fast simplicial finite elements via Bernstein polynomials

Professor Rob Kirby
(Baylor University)
Abstract

For many years, sum-factored algorithms for finite elements in rectangular reference geometry have combined low complexity with the mathematical power of high-order approximation.  However, such algorithms rely heavily on the tensor product structure inherent in the geometry and basis functions, and similar algorithms for simplicial geometry have proven elusive.

Bernstein polynomials are totally nonnegative, rotationally symmetric, and geometrically decomposed bases with many other remarkable properties that lead to optimal-complexity algorithms for element wise finite element computations.  The also form natural building blocks for the finite element exterior calculus bases for the de Rham complex so that H(div) and H(curl) bases have efficient representations as well.  We will also their relevance for explicit discontinuous Galerkin methods, where the element mass matrix requires special attention.

Thu, 28 Apr 2016
11:00
C5

"p-adica nova"

Jochen Koenigsmann
(Oxford)
Abstract

This will be a little potpourri containing some of the recent developments on the model theory of F_p((t)) and of algebraic extensions of Q_p.

Wed, 27 Apr 2016

16:00 - 17:00
C1

Random walks, harmonic functions and Poisson boundary

Vigolo Federico
(Oxford)
Abstract

in this talk I will try to introduce some key ideas and concepts about random walks on discrete spaces, with special interest on random walks on Cayley graphs.

Wed, 27 Apr 2016
16:00
C2

A counterexample to the Ho-Zhao problem

Achim Jung
(Birmingham)
Abstract

It is quite easy to see that the sobrification of a
topological space is a dcpo with respect to its specialisation order
and that the topology is contained in the Scott topology wrt this
order. It is also known that many classes of dcpo's are sober when
considered as topological spaces via their Scott topology. In 1982,
Peter Johnstone showed that, however, not every dcpo has this
property in a delightful short note entitled "Scott is not always
sober".

Weng Kin Ho and Dongsheng Zhao observed in the early 2000s that the
Scott topology of the sobrification of a dcpo is typically different
from the Scott topology of the original dcpo, and they wondered
whether there is a way to recover the original dcpo from its
sobrification. They showed that for large classes of dcpos this is
possible but were not able to establish it for all of them. The
question became known as the Ho-Zhao Problem. In a recent
collaboration, Ho, Xiaoyong Xi, and I were able to construct a
counterexample.

In this talk I want to present the positive results that we have about
the Ho-Zhao problem as well as our counterexample. 

Wed, 27 Apr 2016

12:15 - 13:15
L4

From maximal to minimal supersymmetry in string loop amplitudes

Dr Marcus Berg
(Karlstadt University)
Abstract
I will summarize recent (arXiv:1603.05262) and upcoming work with Igor Buchberger and Oliver Schlotterer. We construct a map from n-point 1-loop string amplitudes in maximal supersymmetry to n-3-point 1-loop amplitudes in minimal supersymmetry. I will outline a few implications for the quantum string effective action.
Tue, 26 Apr 2016

17:00 - 18:00
L1

Tadashi Tokieda - Toy Models

Tadashi Tokieda
(Cambridge)
Abstract

Would you like to come see some toys?

'Toys' here have a special sense: objects of daily life which you can find or make in minutes, yet which, if played with imaginatively reveal surprises that keep scientists puzzling for a while. We will see table-top demos of many such toys and visit some of the science that they open up. The common theme is singularity.

Tadashi Tokieda is the Director of Studies in Mathematics at Trinity Hall, Cambridge and the Poincaré Professor in the Department of Mathematics, Stanford.

To book please email @email

Tue, 26 Apr 2016
14:30
L3

Applications of minimum rank of matrices described by a graph or sign pattern

Leslie Hogben
(Iowa State University)
Abstract

Low-rank compression of matrices and tensors is a huge and growing business.  Closely related is low-rank compression of multivariate functions, a technique used in Chebfun2 and Chebfun3.  Not all functions can be compressed, so the question becomes, which ones?  Here we focus on two kinds of functions for which compression is effective: those with some alignment with the coordinate axes, and those dominated by small regions of localized complexity.

Tue, 26 Apr 2016

14:15 - 15:30
L4

Multiserial and Special Multiserial Algebras

Sibylle Schroll
(Leicester)
Abstract

The class of multiserial algebras contains many well-studied examples of algebras such as the intensely-studied biserial and special biserial algebras. These, in turn, contain many of the tame algebras arising in the modular representation theory of finite groups such as tame blocks of finite groups and all tame blocks of Hecke algebras. However, unlike  biserial algebras which are of tame representation type, multiserial algebras are generally of wild representation type. We will show that despite this fact, we retain some control over their representation theory.

Tue, 26 Apr 2016
14:00
L3

Best L1 polynomial approximation

Yuji Nakatsukasa
(University of Oxford)
Abstract

An important observation in compressed sensing is the exact recovery of an l0 minimiser to an underdetermined linear system via the l1 minimiser, given the knowledge that a sparse solution vector exists. Here, we develop a continuous analogue of this observation and show that the best L1 and L0 polynomial approximants of a corrupted function (continuous analogue of sparse vectors) are equivalent. We use this to construct best L1 polynomial approximants of corrupted functions via linear programming. We also present a numerical algorithm for computing best L1 polynomial approximants to general continuous functions, and observe that compared with best L-infinity and L2 polynomial approximants, the best L1 approximants tend to have error functions that are more localized.

Joint work with Alex Townsend (MIT).

Tue, 26 Apr 2016

12:00 - 13:15
L4

Extended QFT in Euclidean and Minkowskian signatures

Andre Henriques
Abstract

I'll explain the formalism of extended QFT, while
focusing on the cases of two dimensional conformal field theories,
and three dimensional topological field theories.

Mon, 25 Apr 2016

16:00 - 17:00
L4

The decay of solutions of Maxwell-Klein-Gordon equations

Shiwu Yang
(Cambridge)
Abstract

It has been shown that there are global solutions to 
Maxwell-Klein-Gordon equations in Minkowski space with finite energy 
data. However, very little is known about the asymptotic behavior of the 
solution. In this talk, I will present recent progress on the decay 
properties of the solutions. We show the quantitative energy flux decay 
of the solutions with data merely bounded in some weighted energy space. 
The results in particular hold in the presence of large total charge. 
This is the first result that gives a complete and precise description 
of the global behavior of large nonlinear fields.
 

Mon, 25 Apr 2016

15:45 - 16:45
L6

Finiteness Properties and Free Abelian Subgroups

Robert Kropholler
(Oxford)
Abstract

Finiteness properties of groups come in many flavours, I will discuss topological finiteness properties. These relate to the finiteness of skelata in a classifying space. Groups with interesting finiteness properties have been found in many ways, however all such examples contains free abelian subgroups of high rank. I will discuss some constructions of groups discussing the various ways we can reduce the rank of a free abelian subgroup. 

Mon, 25 Apr 2016
14:15
L4

K-contact & Sasakian manifolds of dimension 5

Vicente Muñoz
(Universidad Complutense de Madrid)
Abstract

Sasakian manifolds are odd-dimensional counterparts of Kahler manifolds in even dimensions, 
with K-contact manifolds corresponding to symplectic manifolds. It is an interesting problem to find
obstructions for a closed manifold to admit such types of structures and in particular, to construct
K-contact manifolds which do not admit Sasakian structures. In the simply-connected case, the
hardest dimension is 5, where Kollar has found subtle obstructions to the existence of Sasakian 
structures, associated to the theory of algebraic surfaces.
In this talk, we develop methods to distinguish K-contact manifolds from Sasakian ones in 
dimension 5. In particular, we find the first example of a closed 5-manifold with first Betti number 0 which is K-contact but which carries no semi-regular Sasakian structure.

 (Joint work with J.A. Rojo and A. Tralle).