Tue, 16 Feb 2016

12:00 - 13:15
L4

The inverse scattering problem for integrable quantum field theories in two dimensions, and its operator-algebraic solution

Gandalf Lechner
(Cardiff University)
Abstract

In this talk, I will review an inverse scattering construction of interacting integrable quantum field theories on two-dimensional Minkowski space and its ramifications. The construction starts from a given two-body S-matrix instead of a classical Lagrangean, and defines corresponding quantum field theories in a non-perturbative manner in two steps: First certain semi-local fields are constructed explicitly, and then the analysis of the local observable content is carried out with operator-algebraic methods (Tomita-Takesaki modular theory, split subfactor inclusions). I will explain how this construction solves the inverse scattering problem for a large family of interactions, and also discuss perspectives on extensions of this program to higher dimensions and/or non-integrable theories.

Mon, 15 Feb 2016
16:30
C1

Partition regularity of $x+y=z^2$ over $\mathbb{Z}/p\mathbb{Z}$

Sofia Lindqvist
((Oxford University))
Abstract

Consider the following question. Given a $k$-colouring of the positive integers, must there exist a solution to $x+y=z^2$ with $x,y,z$ all the same colour (and not all equal to 2)? Using $10$ colours a counterexample can be given to show that the answer is "no". If one instead asks the same question over $\mathbb{Z}/p\mathbb{Z}$ for some prime $p$, the answer turns out to be "yes", provided $p$ is large enough in terms of the number of colours used.  I will talk about how to prove this using techniques developed by Ben Green and Tom Sanders. The main ingredients are a regularity lemma, a counting lemma and a Ramsey lemma.

Mon, 15 Feb 2016

16:00 - 17:00
L4

Flowing to minimal surfaces

Melanie Rupflin
(OxPDE, University of Oxford)
Abstract

For maps from surfaces there is a close connection between the area of the surface parametrised by the map and its Dirichlet energy and this translates also into a relation for the corresponding critical points. As such, when trying to find minimal surfaces, one route to take is to follow a suitable gradient flow of the Dirichlet energy. In this talk I will introduce such a flow which evolves both a map and a metric on the domain in a way that is designed to change the initial data into a minimal immersions and discuss some question concerning the existence of solutions and their asymptotic behaviour. This is joint work with Peter Topping.

Mon, 15 Feb 2016
15:45
L6

The Curved Cartan Complex

Constantin Teleman
(Oxford)
Abstract

  
The Cartan model computes the equivariant cohomology of a smooth manifold X with 
differentiable action of a compact Lie group G, from the invariant functions on 
the Lie algebra with values in differential forms and a deformation of the de Rham 
differential. Before extracting invariants, the Cartan differential does not square 
to zero. Unrecognised was the fact that the full complex is a curved algebra, 
computing the quotient by G of the algebra of differential forms on X. This 
generates, for example, a gauged version of string topology. Another instance of 
the construction, applied to deformation quantisation of symplectic manifolds, 
gives the BRST construction of the symplectic quotient. Finally, the theory for a 
X point with an additional quadratic curving computes the representation category 
of the compact group G.

Mon, 15 Feb 2016

15:45 - 16:45
L5

A Stratonovich-Skorohod integral formula for Gaussian rough paths.

Nengli Lim
(Imperial College London)
Abstract

We derive a Stratonovich-to-Skorohod integral conversion formula for a class of integrands which are path-level solutions to RDEs driven by Gaussian rough paths. This is done firstly by showing that this class lies in the domain of the Skorohod integral, and secondly, by appending the Riemann-sum approximants of the Skorohod integral with a suitable compensation term. To show the convergence of the Riemann-sum approximants, we utilize a novel characterization of the Cameron-Martin norm using higher dimensional Young-Stieltjes integrals. Moreover, in the case where complementary regularity is absent, i.e. when the integrand has finite p-variation and the integrator has finite q-variation but 1/p + 1/q <= 1, we give new and sufficient conditions for the convergence these Young integrals.

Mon, 15 Feb 2016
14:15
L4

Generalized Kähler structures from a holomorphic Poisson viewpoint

Marco Gualtieri
(Toronto)
Abstract

After reviewing the main results relating holomorphic Poisson geometry to generalized Kahler structures, I will explain some recent progress in deforming generalized Kahler structures. I will also describe a new way to view generalized kahler geometry purely in terms of Poisson structures.

Mon, 15 Feb 2016

14:15 - 15:00
L5

'From differentially subordinate martingales under a change of law to optimal weighted estimates in harmonic analysis'

Stefanie Petermichl
(Toulouse)
Abstract

The Hilbert transform is a central operator in harmonic analysis as it gives access to the harmonic conjugate function. The link between pairs of martingales (X,Y) under differential subordination and the pair (f,Hf) of a function and its Hilbert transform have been known at least since the work of Burkholder and Bourgain in the UMD setting.

During the last 20 years, new and more exact probabilistic interpretations of operators such as the Hilbert transform have been studied extensively. The motivation for this was in part the study of optimal weighted estimates in harmonic analysis. It has been known since the 70s that H:L^2(w dx) to L^2(w dx) if and only if w is a Muckenhoupt weight with its finite Muckenhoupt characteristic. By a sharp estimate we mean the correct growth of the weighted norm in terms of this characteristic. In one particular case, such an estimate solved a long standing borderline regularity problem in complex PDE.

In this lecture, we present the historic development of the probabilistic interpretation in this area, as well as recent results and open questions.

Mon, 15 Feb 2016

14:00 - 15:00
L5

TBA

Dr. Garth Wells
(Schlumberger)
Mon, 15 Feb 2016

12:00 - 13:00
L5

Tops as Building Blocks for G2 Manifolds

Andreas Braun
(Oxford)
Abstract

A large number of examples of compact G2 manifolds, relevant to supersymmetric compactifications of M-Theory to four dimensions, can be constructed by forming a twisted connected sum of two appropriate building blocks times a circle. These building blocks, which are appropriate K3-fibred threefolds, are shown to have a natural and elegant construction in terms of tops, which parallels the construction of Calabi-Yau manifolds via reflexive polytopes.

Fri, 12 Feb 2016

16:00 - 17:00
L1

From particle systems to Fluid Mechanics

Isabelle Gallagher
(University of Paris-Diderot)
Abstract

The question of deriving Fluid Mechanics equations from deterministic
systems of interacting particles obeying Newton's laws, in the limit
when the number of particles goes to infinity, is a longstanding open
problem suggested by Hilbert in his 6th problem. In this talk we shall
present a few attempts in this program, by explaining how to derive some
linear models such as the Heat, acoustic and Stokes-Fourier equations.
This corresponds to joint works with Thierry Bodineau and Laure Saint
Raymond.

Fri, 12 Feb 2016
14:15
C3

Models of ice sheet dynamics and meltwater lubrication

Ian Hewitt
(University of Oxford)
Abstract

In this talk I will review mathematical models used to describe the dynamics of ice sheets, and highlight some current areas of active research.  Melting of glaciers and ice sheets causes an increase in global sea level, and provides many other feedbacks on isostatic adjustment, the dynamics of the ocean, and broader climate patterns.  The rate of melting has increased in recent years, but there is still considerable uncertainty over  why this is, and whether the increase will continue.  Central to these questions is understanding the physics of how the ice intereacts with the atmosphere, the ground on which it rests, and with the ocean at its margins.  I will given an overview of the fluid mechanical problems involved and the current state of mathematical/computational modelling.  I will focus particularly on the issue of changing lubrication due to water flowing underneath the ice, and discuss how we can use models to rationalise observations of ice speed-up and slow-down.

Thu, 11 Feb 2016

16:00 - 17:00
L3

Wave-particle coupling in fluid mechanics: bouncing droplets and flapping swimmers

Anand Oza
Abstract
Roughly a decade ago, Yves Couder and coworkers demonstrated that droplets walking on a vibrating fluid bath exhibit several features previously thought to be peculiar to the microscopic quantum realm, including single-particle diffraction, tunneling, quantized orbits, and wave-like statistics in a corral. We here develop an integro-differential trajectory equation for these walking droplets with a view to gaining insight into their subtle dynamics. We then rationalize the emergence of orbital quantization in a rotating frame by assessing the stability of the orbital solutions. In the limit of large vibrational forcing, the chaotic walker dynamics gives rise to a coherent statistical behavior with wave-like features.
 
I will then describe recent efforts to model the dynamics of interacting flapping swimmers. Our study is motivated by recent experiments using a one-dimensional array of wings in a water tank, in which the system adopts “schooling modes” characterized by specific spatial phase relationships between swimmers. We develop a discrete dynamical system that models the swimmers as airfoils shedding point vortices, and study the existence and stability of steady solutions. We expect that our model may be used to understand how schooling behavior is influenced by hydrodynamics in more general contexts.
 
Thu, 11 Feb 2016

14:00 - 15:00
L5

Tensor product approach for solution of multidimensional differential equations

Dr. Sergey Dolgov
(Bath University)
Abstract

Partial differential equations with more than three coordinates arise naturally if the model features certain kinds of stochasticity. Typical examples are the Schroedinger, Fokker-Planck and Master equations in quantum mechanics or cell biology, as well as quantification of uncertainty.
The principal difficulty of a straightforward numerical solution of such equations is the `curse of dimensionality': the storage cost of the discrete solution grows exponentially with the number of coordinates (dimensions).

One way to reduce the complexity is the low-rank separation of variables. One can see all discrete data (such as the solution) as multi-index arrays, or tensors. These large tensors are never stored directly.
We approximate them by a sum of products of smaller factors, each carrying only one of the original variables. I will present one of the simplest but powerful of such representations, the Tensor Train (TT) decomposition. The TT decomposition generalizes the approximation of a given matrix by a low-rank matrix to the tensor case. It was found that many interesting models allow such approximations with a significant reduction of storage demands.

A workhorse approach to computations with the TT and other tensor product decompositions is the alternating optimization of factors. The simple realization is however prone to convergence issues.
I will show some of the recent improvements that are indispensable for really many dimensions, or solution of linear systems with non-symmetric or indefinite matrices.

Thu, 11 Feb 2016
12:00
L6

Blow up by bubbling in critical parabolic problems

Manuel del Pino
(Universidad de Chile)
Abstract
We report some new results on construction of blowing up solutions by scalings of a finite energy entire steady states in two parabolic equations: the semilinear heat equation with critical nonlinearity and the 2d harmonic map flow into S2.
Wed, 10 Feb 2016
16:00
C3

Quasi-isometric rigidity and higher-rank symmetric spaces

Elia Fioravanti
(Oxford University)
Abstract

I will discuss a couple of techniques often useful to prove quasi-isometric rigidity results for isometry groups. I will then sketch how these were used by B. Kleiner and B. Leeb to obtain quasi-isometric rigidity for the class of fundamental groups of closed locally symmetric spaces of noncompact type.

Wed, 10 Feb 2016
15:00
L4

Cryptographic Vulnerability Disclosure: The Good, The Bad, and The Ugly

Kenny Paterson
(Royal Holloway, University of London)
Abstract

In this talk, I'll discuss some personal experiences - good, bad, and
ugly - of disclosing vulnerabilities in a range of different cryptographic
standards and implementations. I'll try to draw some general lessons about
what works well and what does not.

Tue, 09 Feb 2016

15:45 - 16:45
L4

A new duality for categories of B-branes

Ed Segal
(Inperial College London)
Abstract

Given an Artin stack $X$, there is growing evidence that there should be an associated `category of B-branes', which is some subcategory of the derived category of coherent sheaves on $X$. The simplest case is when $X$ is just a vector space modulo a linear action of a reductive group, or `gauged linear sigma model' in physicists' terminology. In this case we know some examples of what the category B-branes should be. Hori has conjectured a physical duality between certain families of GLSMs, which would imply that their B-brane categories are equivalent. We prove this equivalence of categories. As an application, we construct Homological Projective Duality for (non-commutative resolutions of) Pfaffian varieties.