This workshop has been postponed with no new date set as yet.
Abstract
There will be a BP workshop but we are waiting for some suggested alternative dates.
There will be a BP workshop but we are waiting for some suggested alternative dates.
Distortion is an asymptotic invariant of the embeddings
of finitely generated algebras. For group embeddings,
it has been introduced by M.Gromov. The main part of
the talk will be based on a recent work with Yu.Bahturin,
where we consider the behavior of distortion functions
for subalgebras of associative and Lie algebras.
Voiculescu showed how the large N limit of the expected value of the trace of a word on n independent hermitian NxN matrices gives a well known von Neumann algebra. In joint work with Guionnet and Shlyakhtenko it was shown that this idea makes sense in the context of very general planar algebras where one works directly in the large N limit. This allowed us to define matrix models with a non-integral number of random matrices. I will present this work and some of the subsequent work, together with future hopes for the theory.
We present a dynamic bank run model for liquidity risk where a financial institution finances its risky assets by a mixture of short- and long-term debt. The financial institution is exposed to liquidity risk as its short-term creditors have the possibility not to renew their funding at a finite number of rollover dates. Besides, the financial institution can default due to insolvency at any time until maturity. We compute both insolvency and illiquidity default probabilities in this multi-period setting. We show that liquidity risk is increasing in the volatility of the risky assets and in the ratio of the return that can be earned on the outside market over the return for short-term debt promised by the financial institution. Moreover, we study the influence of the capital structure on the illiquidity probability and derive that illiquidity risk is increasing with the ratio of short-term funding.
As with conventional Higgs bundles, calculating Betti numbers of twisted Higgs bundle moduli spaces through Morse theory requires us to
study holomorphic chains. For the case when the base is P^1, we present a recursive method for constructing all the possible stable chains of a given type and degree by representing a family of chains by a quiver. We present the Betti numbers when the twists are O(1) and O(2), the latter of which coincides with the co-Higgs bundles on P^1. We offer some open questions. In doing so, we mention how these numbers have appeared elsewhere recently, namely in calculations of Mozgovoy related to conjectures coming from the physics literature (Chuang-Diaconescu-Pan).
Many radar designs transmit trains of pulses to estimate the Doppler shift from moving targets, in order to distinguish them from the returns from stationary objects (clutter) at the same range. The design of these waveforms is a compromise, because when the radar's pulse repetition frequency (PRF) is high enough to sample the Doppler shift without excessive ambiguity, the range measurements often also become ambiguous. Low-PRF radars are designed to be unambiguous in range, but are highly ambiguous in Doppler. High-PRF radars are, conversely unambiguous in Doppler but highly ambiguous in range. Medium-PRF radars have a moderate degree of ambiguity (say five times) in both range and Doppler and give better overall performance.
The ambiguities mean that multiple PRFs must be used to resolve the ambiguities (using the principle of the Chinese Remainder Theorom). A more serious issue, however, is that each PRF is now 'blind' at certain ranges, where the received signal arrives at the same time as the next pulse is transmitted, and at certain Doppler shifts (target speeds), when the return is 'folded' in Doppler so that it is hidden under the much larger clutter signal.
A practical radar therefore transmits successive bursts of pulses at different PRFs to overcome the 'blindness' and to resolve the ambiguities. Analysing the performance, although quite complex if done in detail, is possible using modern computer models, but the inverse problems of synthesing waveforms with a given performance remains difficult. Even more difficult is the problem of gaining intuitive insights into the likely effect of altering the waveforms. Such insights would be extremely valuable for the design process.
This problem is well known within the radar industry, but it is hoped that by airing it to an audience with a wider range of skills, some new ways of looking at the problem might be found.
I will discuss the application of Zariski geometries to Mordell Lang, and review the main ideas which are used in the interpretation of a field, given the assumption of non local modularity. I consider some open problems in adapting Zilber's construction to the case of minimal types in separably closed fields.
If two L-functions are added together, the Euler product is destroyed.
Thus the linear combination is not an L-function, and hence we should
not expect a Riemann Hypothesis for it. This is indeed the case: Not
all the zeros of linear combinations of L-functions lie on the
critical line.
However, if the two L-functions have the same functional equation then
almost all the zeros do lie on the critical line. This is not seen
when they have different functional equations.
We will discuss these results (which are due to Bombieri and Hejhal)
during the talk, and demonstrate them using characteristic polynomials
of random unitary matrices, where similar phenomena are observed. If
the two matrices have the same determinant, almost all the zeros of
linear combinations of characteristic polynomials lie on the unit
circle, whereas if they have different determinants all the zeros lie
off the unit circle.
Systems with delays frequently appear in engineering. The presence of delays makes system analysis and control design very complicated. In this talk, the standard H-infinity control problem of time-delay systems will be discussed. The emphasis will be on systems having an input or output delay. The problem is solved in the frequency domain via reduction to a one-block problem and then further to an extended Nehari problem using a simple and intuitive method. After solving the extended Nehari problem, the original problem is solved. The solvability of the extended Nehari problem (or the one-block problem) is equivalent to the nonsingularity of a delay-dependent matrix and the solvability conditions of the standard H-infinity control problem with a delay are then formulated in terms of the existence of solutions to two delay-independent algebraic Riccati equations and a delay-dependent nonsingular matrix.
In this talk, I will discuss various aspects of approximation by radial basis functions on spheres. After a short introduction to the subject of scattered data approximation on spheres and optimal recovery, I will particularly talk about error analysis, a hybrid approximation scheme involving polynomials and radial basis functions and, if time permits, solving nonlinear parabolic equations on spheres.
Discrete problems have a habit of being beautiful but difficult. This can be true even of discrete problems whose continuous analogues are easy. For example: computing the surface area of a sphere of radius N^{1/2} in k-dimensional Euclidean space (easy). Counting the number of representations of an integer N as a sum of k squares (historically hard). In this talk we'll survey a menagerie of discrete analogues of operators arising in harmonic analysis, including singular integral operators (such as the Hilbert transform), maximal functions, and fractional integral operators. In certain cases we can learn everything we want to know about the discrete operator immediately, from its continuous analogue. In other cases the discrete operator requires a completely new approach. We'll see what makes a discrete operator easy/hard to treat, and outline some of the methods that are breaking new ground, key aspects of which come from number theory. In particular, we will highlight the roles played by theta functions, exponential sums, Waring's problem, and the circle method of Hardy and Littlewood. No previous knowledge of singular integral operators or the circle method will be assumed.
In euclidean space there is a well-known parallelogram law relating the
length of vectors a, b, a+b and a-b. In the talk I give a similar formula
for translation lengths of isometries of CAT(0)-spaces. Given an action of
the automorphism group of a free product on a CAT(0)-space, I show that
certain elements can only act by zero translation length. In comparison to
other well-known actions this leads to restrictions about homomorphisms of
these groups to other groups, e.g. mapping class groups.
This talk will summarize some of the problems and conjectures that I haven't managed to solve (although I have tried to) while spending my three years in this job. It will cover the areas of group theory, representation theory, both of general finite groups and of symmetric groups, and fusion systems.