Tue, 14 Jun 2022
15:30
Virtual

Co-associative fibrations of $G_{2}$ manifolds: foundations and speculations.

Simon Donaldson
(Imperial College London and SCGP)
Further Information

The talk will be online (Zoom). People who would like to attend the seminar can also meet in person in L3.

Abstract

The introduction to the talk will review basics of $G_{2}$ geometry in seven dimensions, and associative and co-associative submanifolds. In one part of the talk we will explain how fibrations with co-associative fibres, near the “adiabatic limit” when the fibres are very small,  give insights into various questions about moduli spaces of $G_{2}$ structures and singularity formation. This part is mostly speculative. In the other part of the talk we discuss some analysis questions which enter when setting up the foundations of this adiabatic theory. These can be seen as codimension 2 analogues of free boundary problems and related questions have arisen in a number of areas of differential geometry recently.

Tue, 14 Jun 2022

14:30 - 15:00

TBA

TBA
Tue, 14 Jun 2022

14:00 - 15:00
C6

TBA

Luc Rocher
(Oxford Internet Institute)
Tue, 14 Jun 2022

14:00 - 15:00
L4

Resolution of the Erdős-Sauer problem on regular subgraphs

Benny Sudakov
(ETH Zurich)
Abstract

In this talk we discuss solution of the well-known problem of Erdős and Sauer from 1975 which asks for the maximum number of edges an $n$-vertex graph can have without containing a $k$-regular subgraph, for some fixed integer $k\geq 3$. We prove that any $n$-vertex graph with average degree at least $C_k\log\log n$ contains a $k$-regular subgraph. This matches the lower bound of Pyber, Rödl and Szemerédi and substantially
improves an old result of Pyber, who showed that average degree at least $C_k\log n$ is enough.

Our method can also be used to settle asymptotically a problem raised by Erdős and Simonovits in 1970 on almost regular subgraphs of sparse graphs and to make progress on the well-known question of Thomassen from 1983 on finding subgraphs with large girth and large average degree.

Joint work with Oliver Janzer

Tue, 14 Jun 2022

14:00 - 15:00
L6

Invariable generation and totally deranged elements of simple groups

Scott Harper
(Bristol)
Abstract

By a classical theorem of Jordan, every faithful transitive action of a nontrivial finite group admits a derangement (an element with no fixed points). More recently, the existence of derangements with additional properties has attracted much attention, especially for primitive actions of almost simple groups. Surprisingly, there exist almost simple groups with elements that are derangements in every faithful primitive action; we say that these elements are totally deranged. I'll talk about ongoing work to classify the totally deranged elements of almost simple groups, and I'll mention how this solves a question of Garzoni about invariable generating sets for simple groups.

Tue, 14 Jun 2022

14:00 - 14:30
L5

The strain Hodge Laplacian and DGFEM for the incompatibility operator

Francis Aznaran
((Oxford University))
Abstract

Motivated by the physical relevance of many Hodge Laplace-type PDEs from the finite element exterior calculus, we analyse the Hodge Laplacian boundary value problem arising from the strain space in the linear elasticity complex, an exact sequence of function spaces naturally arising in several areas of continuum mechanics. We propose a discretisation based on the adaptation of discontinuous Galerkin FEM for the incompatibility operator $\mathrm{inc} := \mathrm{rot}\circ\mathrm{rot}$, using the symmetric-tensor-valued Regge finite element to discretise  the strain field; via the 'Regge calculus', this element has already been successfully applied to discretise another metric tensor, namely that arising in general relativity. Of central interest is the characterisation of the associated Sobolev space $H(\mathrm{inc};\mathbb{R}^{d\times d}_{\mathrm{sym}})$. Building on the pioneering work of van Goethem and coauthors, we also discuss promising connections between functional analysis of the $\mathrm{inc}$ operator and Kröner's theory of intrinsic elasticity in the presence of defects.

This is based on ongoing work with Dr Kaibo Hu.

Tue, 14 Jun 2022

12:00 - 13:15
Virtual

Quantum hair and black hole information

Xavier Calmet
(University of Sussex)
Abstract

In this talk, I review some recent results obtained for black holes using
effective field theory methods applied to quantum gravity, in particular the
unique effective action. Black holes are complex thermodynamical objects
that not only have a temperature but also have a pressure. Furthermore, they
have quantum hair which provides a solution to the black hole information
paradox.

Mon, 13 Jun 2022

16:30 - 17:30
L5

Tomographic Strichartz inequalities for the Schrodinger equation

Susana Gutierrez
(Birmingham University)
Abstract

The aim of this talk is to present some novel inequalities for the k-plane transform acting on the modulus square of solutions of the linear time-dependent Schrodinger equation. Our motivation for studying these tomographic expressions comes for virial identities in the context of Schrodinger equations, where tomographic Strichartz estimates of the type we will discuss here appear naturally.

Mon, 13 Jun 2022

16:00 - 17:00
C1

Arithmetic Topology and Duality Theorems

Jay Swar
Abstract

I'll introduce the classical arithmetic topology dictionary of Mumford-Manin-Mazur-Morishita-etc. I'll then present an interesting instance of parallel phenomena related to symplectic structures on moduli spaces of certain bundles. The arithmetic side turns out to be an application of Poitou-Tate duality. Depending on time, I'll delve into the delicate details which make the analogy useful for Diophantine geometers.

Mon, 13 Jun 2022

15:30 - 16:30
L3

Fluid dynamics on geometric rough paths and variational principles

JAMES-MICHAEL LEAHY
(Imperial College London )
Abstract

Noether’s theorem plays a fundamental role in modern physics by relating symmetries of a Lagrangian to conserved quantities of the Euler-Lagrange equations. In ideal fluid dynamics, the theorem relates the particle labeling symmetry to a Kelvin circulation law. Circulation is conserved for incompressible flows and, otherwise, is generated by advected variables through the momentum map due to a broken symmetry. We will introduce variational principles for fluid dynamics that constrain advection to be the sum of a smooth and geometric rough-in-time vector field. The corresponding rough Euler-Poincare equations satisfy a Kelvin circulation theorem and lead to a natural framework to develop parsimonious non-Markovian parameterizations of subgrid-scale dynamics.

Mon, 13 Jun 2022
14:15
L5

Open FJRW theory

Mark Gross
(Cambridge)
Abstract

I will describe joint work with Tyler Kelly and Ran Tessler. FJRW (Fan-Jarvis-Ruan-Witten) theory is an enumerative theory of quasi-homogeneous singularities, or alternatively, of Landau-Ginzburg models. It associates to a potential W:C^n -> C given by a quasi-homogeneous polynomial moduli spaces of (orbi-)curves of some genus and marked points along with some extra structure, and these moduli spaces carry virtual fundamental classes as constructed by Fan-Jarvis-Ruan. Here we specialize to the case W=x^r+y^s and construct an analogous enumerative theory for disks. We show that these open invariants provide perturbations of the potential W in such a way that mirror symmetry becomes manifest. Further, these invariants are dependent on certain choices of boundary conditions, but satisfy a beautiful wall-crossing formalism.

Mon, 13 Jun 2022

14:00 - 15:00
L4

Highly accurate protein structure prediction with AlphaFold

Jonas Adler
(Google)
Abstract

Predicting a protein’s structure from its primary sequence has been a grand challenge in biology for the past 50 years, holding the promise to bridge the gap between the pace of genomics discovery and resulting structural characterization. In this talk, we will describe work at DeepMind to develop AlphaFold, a new deep learning-based system for structure prediction that achieves high accuracy across a wide range of targets. We demonstrated our system in the 14th biennial Critical Assessment of Protein Structure Prediction (CASP14) across a wide range of difficult targets, where the assessors judged our predictions to be at an accuracy “competitive with experiment” for approximately 2/3rds of proteins. The talk will cover both the underlying machine learning ideas and the implications for biological research as well as some promising further work.

Mon, 13 Jun 2022

12:45 - 13:45
L1

TBA

Tom Melia
(Kavli IPMU)
Mon, 13 Jun 2022

12:45 - 13:45
Online

Averaging over approximate CFTs

Alexandre Belin
(Cern)
Further Information

This seminar has been canceled.

Abstract

In this talk, I will investigate the origin of Euclidean wormholes in the gravitational part integral in the context of AdS/CFT. These geometries are confusing since they prevent products of partition functions to factorize, as they should in any quantum mechanical system. I will briefly review the different proposals for the origin of these wormholes, one of which is that one should consider ensemble of average of boundary systems instead of a fixed quantum system with a fixed Hamiltonian. I will explain that it seems unlikely that one can average over CFTs and present a new idea: averaging over approximate CFTs, which I will define. I will then study the variance of the crossing equation in an ensemble relevant for 3d gravity. Based on work in progress with de Boer, Jafferis, Nayak and Sonner.

Fri, 10 Jun 2022

16:00 - 17:00
N4.01

From Gravitational Orbits to Quantum Scars

Matthew Dodelson
(Cern)
Further Information

It is also possible to join online via Microsoft Teams.

Abstract

I will describe recent work with Zhibeodov on the boundary interpretation of orbits around an AdS black hole. When the orbits are far away from the black hole, these orbits describe heavy-light double-twist operators on the boundary. I will discuss how the dimensions of these operators can be computed exactly in terms of quasinormal modes in the bulk, using techniques from a paper to appear soon with Grassi, Iossa, Lichtig, and Zhiboedov. Then I will explain how these results are related to the concept of quantum scars, which are eigenstates that do not obey ETH. 

Fri, 10 Jun 2022

16:00 - 17:00
L2

Maths Meets Stats

Melanie Weber and Francesca Panero
Abstract

Melanie Weber 

Title: Geometric Methods for Machine Learning and Optimization

Abstract: A key challenge in machine learning and optimization is the identification of geometric structure in high-dimensional data. Such structural understanding is of great value for the design of efficient algorithms and for developing fundamental guarantees for their performance. Motivated by the observation that many applications involve non-Euclidean data, such as graphs, strings, or matrices, we discuss how Riemannian geometry can be exploited in Machine Learning and Optimization. First, we consider the task of learning a classifier in hyperbolic space. Such spaces have received a surge of interest for representing large-scale, hierarchical data, since they achieve better representation accuracy with fewer dimensions. Secondly, we consider the problem of optimizing a function on a Riemannian manifold. Specifically, we will consider classes of optimization problems where exploiting Riemannian geometry can deliver algorithms that are computationally superior to standard (Euclidean) approaches.

 

Francesca Panero

Title: A general overview of the different projects explored during my DPhil in Statistics.

Abstract: In the first half of the talk, I will present my work on statistical models for complex networks. I will propose a model to describe sparse spatial random graph underpinned by the Bayesian nonparametric theory and asymptotic properties of a more general class of these models, regarding sparsity, degree distribution and clustering coefficients.

The second half will be devoted to the statistical quantification of the risk of disclosure, a quantity used to evaluate the level of privacy that can be achieved by publishing a microdata file without modifications. I propose two ways to estimate the risk of disclosure, using both frequentist and Bayes nonparametric statistics.

 

Fri, 10 Jun 2022
15:00
L3

Directed networks through simplicial paths and Hochschild homology

Henri Riihimäki
(KTH Royal Institute of Technology)
Abstract

Directed graphs are a model for various phenomena in the
sciences. In topological data analysis particularly the advent of
applying topological tools to networks of brain neurons has spawned
interest in constructing topological spaces out of digraphs, developing
computational tools for obtaining topological information, and using
these to understand networks. At the end of the day, (homological)
computations of the spaces reveal something about the geometric
realisation, thereby losing the directionality information.

However, digraphs can also be associated with path algebras. We can now
consider applying Hochschild homology to extract information, hopefully
obtaining something more refined in terms of the combinatorics of the
directed edges and paths in the digraph. Unfortunately, Hochschild
homology tends to vanish beyond degree 1. We can overcome this by
considering different higher paths of simplices, and thus introduce
Hochschild homology of digraphs in higher degrees. Moreover, this
procedure gives an implementable persistence pipeline for network
analysis. This is a joint work with Luigi Caputi.

Fri, 10 Jun 2022

14:00 - 15:00
Online

Smith–Treumann theory and the categorical conjecture

Joshua Ciappara
(University of Sydney)
Further Information

This seminar will be at the normal time of 2pm, this is a change from previous announcements!

Abstract

In the early 2010s, Riche and Williamson proposed new character formulas for simple and indecomposable tilting modules over reductive algebraic groups $G$ in positive characteristic. Even better, they showed their formulas would follow from a conceptually satisfying "categorical conjecture", which they were able to prove for $G = GL_n$. Our first goal in this talk will be to explain the statement of the categorical conjecture, indicating its connection to representation theory and assuming minimal background knowledge. Subsequently, we will introduce Smith–Treumann theory and outline how it may be applied to prove the categorical conjecture in general. Time permitting, we will conclude with remarks on future directions of study.

Fri, 10 Jun 2022

14:00 - 15:00
L6

Systems-mechanobiology of health and disease

Dr Fabian Spill
(School of Mathematics University of Birmingham)
Abstract

Experimental biologists study diseases mostly through their abnormal molecular or cellular features. For example, they investigate genetic abnormalities in cancer, hormonal imbalances in diabetes, or an aberrant immune system in vascular diseases. Moreover, many diseases also have a mechanical component which is critical to their deadliness. Most notably, cancer kills typically through metastasis, where the cancer cells acquire the capability to remodel their adhesions and to migrate. Solid tumours are also characterised by physical changes in the extracellular matrix – the material surrounding the cells. While such physical changes are long known, only relatively recent research revealed that cells can sense altered physical properties and transduce them into chemical information. An example is the YAP/TAZ signalling pathway that can activate in response to altered matrix mechanics and that can drive tumour phenotypes such as the rate of cell proliferation.
Systems-biology models aim to study diseases holistically. In this talk, I will argue that physical signatures are a critical part of many diseases and therefore, need to be incorporated into systems-biology. Crucially, physical disease signatures bi-directionally interact with molecular and cellular signatures, presenting a major challenge to developing such models. I will present several examples of recent and ongoing work aimed at uncovering the relations between mechanical and molecular/cellular signatures in health and disease. I will discuss how blood vessel cells interact mechano-chemically with each other to regulate the passage of cells and nutrients between blood and tissue and how cancer cells grow and die in response to mechanical and geometrical stimuli.

Fri, 10 Jun 2022

13:30 - 17:00
Lecture Theatre 5

Groups and Geometry in the South East

(Mathematical Institute)
Further Information

Property (T) and random quotients of hyperbolic groups

1:30

Calum Ashcroft (Cambridge)

In his original manuscript on hyperbolic groups, Gromov asked whether random quotients of non-elementary hyperbolic groups have Property (T). This question was later refined by Ollivier, and then answered in the case of random quotients of free groups by Zuk (and Kotowski--Kotowski).

In this talk we answer the Gromov--Ollivier question in the affirmative. We will discuss random quotients and some of their properties, in particular with relation to Property (T).

Connections between hyperbolic geometry and median geometry

2:45

Cornelia Drutu (Oxford)

In this talk I shall explain how groups endowed with various forms of hyperbolic geometry, from lattices in rank one simple groups to acylindrically hyperbolic groups, present various degrees of compatibility with the median geometry. This is joint work with Indira Chatterji, and with John Mackay.

TEA

3:45

Division, group rings, and negative curvature

4:00

Grigori Avramidi (Bonn)

In 1997 Delzant observed that fundamental groups of hyperbolic manifolds with large injectivity radius have nicely behaved group rings. In particular, these rings have no zero divisors and only the trivial units. In this talk I will explain how to extend this observation to show such rings have a division algorithm (generalizing the division algorithm for group rings of free groups discovered by Cohn) and that these group rings have``freedom theorems’’ showing that all of their ideals that are generated by few elements are free, where the specific value of `few’ depends on the injectivity radius of the manifold (which can be viewed as generalizations from subgroups to ideals of some freedom theorems of Delzant and Gromov). This has geometric consequences to the homotopy classification of 2-complexes with surface fundamental groups and to complexity of cell structures on hyperbolic manifolds.

Fri, 10 Jun 2022

10:00 - 11:00
L5

Understanding alumina raft melting/splitting phenomenon

Ellen Nordgård-Hansen, Eirik Manger
(NORCE)
Abstract

Alumina is a raw material for aluminium production, and Attila Kovacs made mathematical models for alumina feeding, including heating, melt infiltration, and dissolution. One of his assumptions is that when several alumina particle stick together to form a "raft", these will stay together even if initial frozen cryolite inside this "raft" melts, and even if almost all alumina in the "raft" is dissolved. In reality, the "raft" will break up, either from one of the two mechanisms already mentioned, or from the expansion of gas or water vapor stuck within the "raft". We would therefore like to investigate mathematically when and under which circumstances this splitting up will take place. 

Thu, 09 Jun 2022

16:00 - 18:00
Queen's College

“So Fair a Subterraneous City”: Mining, Maps, and the Politics of Geometry in the Seventeenth Century

Thomas Morel
(Bergische Universitaet Wuppertal)
Further Information

Venue: Shulman Auditorium, Queen's

Abstract

In the aftermath of the Thirty Years War (1618–1648), the mining regions of Central Europe underwent numerous technical and political evolutions. In this context, the role of underground geometry expanded considerably: drawing mining maps and working on them became widespread in the second half of the seventeenth century. The new mathematics of subterranean surveyors finally realized the old dream of “seeing through stones,” gradually replacing alternative tools such as written reports of visitations, wood models, or commented sketches.

I argue that the development of new cartographic tools to visualize the underground was deeply linked to broad changes in the political structure of mining regions. In Saxony, arguably the leading mining region, captain-general Abraham von Schönberg (1640–1711) put his weight and reputation behind the new geometrical technology, hoping that its acceptance would in turn help him advance his reform agenda. At-scale representations were instrumental in justifying new investments, while offering technical road maps to implement them.

 

Thu, 09 Jun 2022

14:00 - 15:00
Virtual

Maximizing the Spread of Symmetric Non-Negative Matrices

John Urschel
(Institute for Advanced Study)
Abstract

The spread of a matrix is defined as the diameter of its spectrum. In this talk, we consider the problem of maximizing the spread of a symmetric non-negative matrix with bounded entries and discuss a number of recent results. This optimization problem is closely related to a pair of conjectures in spectral graph theory made by Gregory, Kirkland, and Hershkowitz in 2001, which were recently resolved by Breen, Riasanovsky, Tait, and Urschel. This talk will give a light overview of the approach used in this work, with a strong focus on ideas, many of which can be abstracted to more general matrix optimization problems.

Thu, 09 Jun 2022

12:00 - 13:00
L1

The ever-growing blob of fluid

Graham.Benham@maths.ox.ac.uk
(Mathematical Institute)
Abstract

Consider the injection of a fluid onto an impermeable surface for an infinite length of time... Does the injected fluid reach a finite height, or does it keep on growing forever? The classical theory of gravity currents suggests that the height remains finite, causing the radius to grow outwards like the square root of time. When the fluid resides within a porous medium, the same is thought to be true. However, recently I used some small scale experiments and numerical simulations, spanning 12 orders of magnitude in dimensionless time, to demonstrate that the height actually grows very slowly, at a rate ~t^(1/7)*(log(t))^(1/2). This strange behaviour can be explained by analysing the flow in a narrow "inner region" close to the source, in which there are significant vertical velocities and non-hydrostatic pressures. Analytical scalings are derived which match closely with both numerics and experiments, suggesting that the blob of fluid is in fact ever-growing, and therefore becomes unbounded with time.

Thu, 09 Jun 2022

11:30 - 15:00
Linbury Building, Worcester College, University of Oxford

Research Working Lunch TT22

Further Information

Details including speakers, tiles and abstracts coming soon ...

Registration is required, please CLICK HERE or scan the below QR code.

QR Code for Research Working Lunch TT22

Organisers: 

Dr Benjamin Fehrman

Eliana Fausti

 

Administrator:

Kerri Louise Howard FInstAM

Abstract

CDT PDE Research Working Lunch Poster

11:30 Refreshments (tea, coffee and homemade biscuits)

12:00 Talks (main room)

13:15 Buffet Style Lunch (incl. tea, coffee and homemade cakes)

15:00 End