Mon, 07 Mar 2022

16:30 - 17:30
Virtual

Nonlinear wave equations, the weak null condition, and radiation fields

Joseph Keir
(Oxford University)
Abstract

Nonlinear wave equations are ubiquitous in physics, and in three spatial dimensions they can exhibit a wide range of interesting behaviour even in the small data regime, ranging from dispersion and scattering on the one hand, through to finite-time blowup on the other. The type of behaviour exhibited depends on the kinds of nonlinearities present in the equations. In this talk I will explore the boundary between "good" nonlinearities (leading to dispersion similar to the linear waves) and "bad" nonlinearities (leading to finite-time blowup). In particular, I will give an overview of a proof of global existence (for small initial data) for a wide class of nonlinear wave equations, including some which almost fail to exist globally, but in which the singularity in some sense takes an infinite time to form. I will also show how to construct other examples of nonlinear wave equations whose solutions exhibit very unusual asymptotic behaviour, while still admitting global small data solutions.

Mon, 07 Mar 2022

16:00 - 17:00
C2

TBA

Benjamin Bedert
Mon, 07 Mar 2022
15:30
L5

Some applications of the geometry of surfaces to Biology

Joel Hass
(University of California Davis)
Abstract

Abstract: Almost everything we encounter in our 3-dimensional world is a surface - the outside of a solid object. Comparing the shapes of surfaces is, not surprisingly, a fundamental problem in both theoretical and applied mathematics. Results from the mathematical theory of surfaces are now being used to study objects such as bones, brain cortices, proteins and biomolecules.  This talk will discuss recent joint work with Patrice Koehl that introduces a new metric on the space of Riemannian surfaces of genus-zero and some applications to biological surfaces.

Mon, 07 Mar 2022

15:30 - 16:30
L3

Positivity preserving truncated Euler-Maruyama method for stochastic Lotka-Volterra model

XUERONG MAO
(University of Strathclyde)
Abstract

Most of SDE models in epidemics, ecology, biology, finance etc. are highly nonlinear and do not have explicit solutions. Monte Carlo simulations have played a more and more important role. This talk will point out several well-known numerical schemes may fail to preserve the positivity or moment of the solutions to SDE models. Reliable numerical schemes are therefore required to be designed so that the corresponding Monte Carlo simulations can be trusted. The talk will then concentrate on new numerical schemes for the well-known stochastic Lotka--Volterra model for interacting multi-species. This model has some typical features: highly nonlinear, positive solution and multi-dimensional. The known numerical methods including the tamed/truncated Euler-Maruyama (EM) applied to it do not preserve its positivity. The aim of this talk is to modify the truncated EM to establish a new positive preserving truncated EM (PPTEM).

 

Mon, 07 Mar 2022
14:15
L5

Brakke Regularity for the Allen--Cahn Flow

Huy The Nguyen
(Queen Mary University, London)
Further Information

The talk will be both online (Teams) and in person (L5)

Abstract

In this talk we prove an analogue of the Brakke's $\epsilon$-regularity theorem for the parabolic Allen--Cahn equation. In particular, we show uniform $C^{2,\alpha}$ regularity for the transition layers converging to smooth mean curvature flows as $\epsilon\rightarrow 0$. A corresponding gap theorem for entire eternal solutions of the parabolic Allen--Cahn is also obtained. As an application of the regularity theorem, we give an affirmative answer to a question of Ilmanen that there is no cancellation in BV convergence in the mean convex setting.

Mon, 07 Mar 2022

14:00 - 15:00
Virtual

Towards practical estimation of Brenier maps

Jonathan Niles-Weed
(New York University)
Abstract

Given two probability distributions in R^d, a transport map is a function which maps samples from one distribution into samples from the other. For absolutely continuous measures, Brenier proved a remarkable theorem identifying a unique canonical transport map, which is "monotone" in a suitable sense. We study the question of whether this map can be efficiently estimated from samples. The minimax rates for this problem were recently established by Hutter and Rigollet (2021), but the estimator they propose is computationally infeasible in dimensions greater than three. We propose two new estimators---one minimax optimal, one not---which are significantly more practical to compute and implement. The analysis of these estimators is based on new stability results for the optimal transport problem and its regularized variants. Based on joint work with Manole, Balakrishnan, and Wasserman and with Pooladian.

Mon, 07 Mar 2022
13:00
L2

Symmetry-enriched quantum criticality

Nick Jones
(Oxford)
Abstract

I will review aspects of the theory of symmetry-protected topological phases, focusing on the case of one-dimensional quantum chains. Important concepts include the bulk-boundary correspondence, with bulk topological invariants leading to interesting boundary phenomena. I will discuss topological invariants and associated boundary phenomena in the case that the system is gapless and described at low energies by a conformal field theory. Based on work with Ruben Verresen, Ryan Thorngren and Frank Pollmann.

Fri, 04 Mar 2022
16:00
N4.01

Infrared phases of QCD in two dimensions

Matthew Yu
(Perimeter Institute)
Further Information

It is also possible to join virtually via Teams.

Abstract

Understanding dynamics of strongly coupled theories is a problem that garners great interest from many fields of physics. In order to better understand theories in 3+1d one can look to lower dimensions for theories which share some properties, but also may exhibit new features that are useful to understand the dynamics. QCD in 1+1d is a strongly coupled theory in the IR, and this talk will explain how to determine if these theories are gapped or gapless in the IR. Moreover, I will describe what IR theory that UV QCD flows to and discuss the IR dynamics. 

Fri, 04 Mar 2022

15:00 - 16:00
L6

Open questions on protein topology in its natural environment.

Christopher Prior
(Durham University)
Abstract

Small angle x-ray scattering is one of the most flexible and readily available experimental methods for obtaining information on the structure of proteins in solution. In the advent of powerful predictive methods such as the alphaFold and rossettaFold algorithms, this information has become increasingly in demand, owing to the need to characterise the more flexible and varying components of proteins which resist characterisation by these and more standard experimental techniques. To deal with structures about little of which is known a parsimonious method of representing the tertiary fold of a protein backbone as a discrete curve has been developed. It represents the fundamental local Ramachandran constraints through a pair of parameters and is able to generate millions of potentially realistic protein geometries in a short space of time. The data obtained from these methods provides a treasure trove of information on the potential range of topological structures available to proteins, which is much more constrained that that available to self-avoiding walks, but still far more complex than currently understood from existing data. I will introduce this method and its considerations then attempt to pose some questions I think topological data analysis might help answer. Along the way I will ask why roadies might also help give us some insight….

Fri, 04 Mar 2022

14:00 - 15:00
L1

Preparing for Prelims and Part A exams

Further Information

Preparing for Prelims and Part A exams

This session will offer guidance for Prelims and Part A students preparing for closed-book, in-person exams this summer, with tips on revision and information about practical arrangements. If you have questions, please send them in advance (by 28 February) via https://vevox.app/#/m/170975861 and we'll try to address as many as possible during the session.

A separate session in Week 6 will be aimed at students doing Part B, Part C and MSc exams.

Abstract

Preparing for Prelims and Part A exams with Dr Vicky Neale

Description: This session will offer guidance for Prelims and Part A students preparing for closed-book, in-person exams this summer, with tips on revision and information about practical arrangements. If you have questions, please send them in advance (by 28 February) via https://vevox.app/#/m/170975861 and we'll try to address as many as possible during the session.

A separate session in Week 6 will be aimed at students doing Part B, Part C and MSc exams.

Fri, 04 Mar 2022

14:00 - 15:00
L6

Koszul Monoids in Quasi-abelian Categories

Rhiannon Savage
(University of Oxford)
Abstract

In this talk I will discuss my extension of the Koszul duality theory of Beilinson, Ginzburg, and Soergel to the more general setting of quasi-abelian categories. In particular, I will define the notions of Koszul monoids, and quadratic monoids and their duals. Schneiders' embedding of a quasi-abelian category into an abelian category, its left heart, allows us to prove an equivalence of derived categories for certain categories of modules over Koszul monoids and their duals. The key examples of categories for which this theory works are the categories of complete bornological spaces and the categories of inductive limits of Banach spaces. These categories frequently appear in derived analytic geometry.

Fri, 04 Mar 2022

14:00 - 15:00
L3

Do we understand Fibonacci numbers in plants?

Dr Jonathan Swinton
(Swinton.net)
Abstract

Fibonacci numbers in plants, such as in sunflower spiral counts, have long fascinated mathematicians. For the last thirty years, most analyses have been variants of a Standard Model in which plant organs are treated as point nodes successively placed on a cylinder according to a given function of the previous node positions, not too close or too far away from the existing nodes. These models usually lead to lattice solutions. As a parameter of the model, like the diameter of the cylinder, is changed, the lattice can transition to another, more complex lattice, with a different spiral count. It can typically be proved that these transitions move lattice counts to higher Fibonacci numbers. While mathematically compelling, empirical validation of this Standard Model is as yet weak, even though the underlying molecular mechanisms are increasingly well characterised. 

In this talk I'll show a gallery of Fibonacci patterning and give a brief history of mathematical approaches, including a partially successful attempt by Alan Turing. I'll describe how the classification of lattices on cylinders connects both to a representation of $SL(2,Z)$ and to applications through defining the constraint that any model must satisfy to show Fibonacci structure. I'll discuss a range of such models, how they might be used to make testable predictions, and why this matters.

From 2011 to 2017 Jonathan Swinton  was a visiting professor to MPLS in Oxford in Computational Systems Biology. His new textbook Mathematical Phyllotaxis will be published  soon, and his Alan Turing's Manchester will be republished by The History Press in May 2022. 

 

Thu, 03 Mar 2022
16:00
Virtual

Existentially closed measure-preserving actions of universally free groups

Isaac Goldbring
(University of California Irvine)
Abstract

In this talk, we discuss existentially closed measure preserving actions of countable groups.  A classical result of Berenstein and Henson shows that the model companion for this class exists for the group of integers and their analysis readily extends to cover all amenable groups.  Outside of the class of amenable groups, relatively little was known until recently, when Berenstein, Henson, and Ibarlucía proved the existence of the model companion for the case of finitely generated free groups.  Their proof relies on techniques from stability theory and is particular to the case of free groups.  In this talk, we will discuss the existence of model companions for measure preserving actions for the much larger class of universally free groups (also known as fully residually free groups), that is, groups which model the universal theory of the free group.  We also give concrete axioms for the subclass of elementarily free groups, that is, those groups with the same first-order theory as the free group.  Our techniques are ergodic-theoretic and rely on the notion of a definable cocycle.  This talk represents ongoing work with Brandon Seward and Robin Tucker-Drob.

Thu, 03 Mar 2022

16:00 - 17:00
L4

Density of rational points on del Pezzo surfaces of degree 1

Rosa Winter
(King's College London)
Abstract

Let X be an algebraic variety over an infinite field k. In arithmetic geometry we are interested in the set X(k) of k-rational points on X. For example, is X(k) empty or not? And if it is not empty, is X(k) dense in X with respect to the Zariski topology?


Del Pezzo surfaces are surfaces classified by their degree d, which is an integer between 1 and 9 (for d >= 3, these are the smooth surfaces of degree d in P^d). For del Pezzo surfaces of degree at least 2 over a field k, we know that the set of k-rational points is Zariski dense provided that the surface has one k-rational point to start with (that lies outside a specific subset of the surface for degree 2). However, for del Pezzo surfaces of degree 1 over a field k, even though we know that they always contain at least one k-rational point, we do not know if the set of k-rational points is Zariski dense in general.


I will talk about density of rational points on del Pezzo surfaces, state what is known so far, and show a result that is joint work with Julie Desjardins, in which we give sufficient and necessary conditions for the set of k-rational points on a specific family of del Pezzo surfaces of degree 1 to be Zariski dense, where k is finitely generated over Q.

Thu, 03 Mar 2022
14:00
L6

String Cosmology

Joseph McGovern
((Oxford University))
Abstract

Junior Strings is a seminar series where DPhil students present topics of common interest that do not necessarily overlap with their own research area. This is primarily aimed at PhD students and post-docs but everyone is welcome

Thu, 03 Mar 2022

14:00 - 15:00
Virtual

Bayesian approximation error applied to parameter and state dimension reduction in the context of large-scale ice sheet inverse problems

Noémi Petra
(University of California Merced)
Abstract

Solving large-scale Bayesian inverse problems governed by complex models suffers from the twin difficulties of the high dimensionality of the uncertain parameters and computationally expensive forward models. In this talk, we focus on 1. reducing the computational cost when solving these problems (via joint parameter and state dimension reduction) and 2. accounting for the error due to using a reduced order forward model (via Bayesian Approximation Error (BAE)).  To reduce the parameter dimension, we exploit the underlying problem structure (e.g., local sensitivity of the data to parameters, the smoothing properties of the forward model, the fact that the data contain limited information about the (infinite-dimensional) parameter field, and the covariance structure of the prior) and identify a likelihood-informed parameter subspace that shows where the change from prior to posterior is most significant. For the state dimension reduction, we employ a proper orthogonal decomposition (POD) combined with the discrete empirical interpolation method (DEIM) to approximate the nonlinear term in the forward model. We illustrate our approach with a model ice sheet inverse problem governed by the nonlinear Stokes equation for which the basal sliding coefficient field (a parameter that appears in a Robin boundary condition at the base of the geometry) is inferred from the surface ice flow velocity. The results show the potential to make the exploration of the full posterior distribution of the parameter or subsequent predictions more tractable.

This is joint work with Ki-Tae Kim (UC Merced), Benjamin Peherstorfer (NYU) and Tiangang Cui (Monash University).

Thu, 03 Mar 2022
11:30
C6

Monadic Second Order interpretations

Mikołaj Bojańczyk
(University of Warsaw/University of Oxford)
Abstract

MSO can be used not only to accept/reject words, but also to transform words into other words, e.g. the doubling function w $\mapsto$ ww. The traditional model for this is called MSO transductions; the idea is that each position of the output word is interpreted in some position of the input word, and MSO is used to define the order on output positions and their labels. I will explain that an extension, where output positions are interpreted using $k$-tuples of input positions, is (a) is also well behaved; and (b) this is surprising.

Wed, 02 Mar 2022

16:00 - 17:00
C2

Amenable actions and groups

Paweł Piwek
(University of Oxford)
Abstract

Amenable actions are answering the question: "When can we prevent things like the Banach-Tarski Paradox happening?". It turns out that the most intuitive measure-theoretic sufficient condition is also necessary. We will briefly discuss the paradox, prove the equivalent conditions for amenability, give some ways of producing interesting examples of amenable groups and talk about amenable groups which can't be produced in these 'elementary' ways.

Teaser question: show that you can't decompose Z into finitely many pieces, which after rearrangement by translations make two copies of Z. (I.e. that you can't get the Banach-Tarski paradox on Z.)

Wed, 02 Mar 2022

14:00 - 16:00
Virtual

Topics on Nonlinear Hyperbolic PDEs

Gui-Qiang G. Chen
(Oxford University)
Further Information

Dates/ Times (GMT): 2pm – 4pm Wednesdays 9th, 16th, 23rd Feb, and 2nd March

Course Length: 8 hrs total (4 x 2 hrs)

Abstract

Aimed: An introduction to the nonlinear theory of hyperbolic PDEs, as well as its close connections with the other areas of mathematics and wide range of applications in the sciences.

Wed, 02 Mar 2022

14:00 - 15:00
Virtual

Twisted eleven-dimensional supergravity and exceptional lie algebras

Surya Raghavendran
(University of Toronto and Perimeter Institute)
Abstract

I'll describe an interacting holomorphic-topological field theory in eleven dimensions defined on products of Calabi-Yau 5-folds with real one-manifolds. The theory describes a certain deformation of the cotangent bundle to the moduli of Calabi-Yau deformations of the 5-fold and conjecturally describes a certain protected sector of eleven-dimensional supergravity. Strikingly, the theory has an infinite dimensional global symmetry algebra given by an extension of the exceptional lie superalgebra E(5,10) first studied by Kac. This talk is based on joint work with Ingmar Saberi and Brian Williams.

 

Wed, 02 Mar 2022

13:00 - 16:00
L4

March 2022 CDT in Maths of Random Systems Workshop

Jonathan Tam, Remy Messadene, Julien Berestycki
(University of Oxford and Imperial College London)
Further Information

Please contact @email for remote link

Abstract

1pm Jonathan Tam: Markov decision processes with observation costs

We present a framework for a controlled Markov chain where the state of the chain is only given at chosen observation times and of a cost. Optimal strategies therefore involve the choice of observation times as well as the subsequent control values. We show that the corresponding value function satisfies a dynamic programming principle, which leads to a system of quasi-variational inequalities (QVIs). Next, we give an extension where the model parameters are not known a priori but are inferred from the costly observations by Bayesian updates. We then prove a comparison principle for a larger class of QVIs, which implies uniqueness of solutions to our proposed problem. We utilise penalty methods to obtain arbitrarily accurate solutions. Finally, we perform numerical experiments on three applications which illustrate our framework.

Preprint at https://arxiv.org/abs/2201.07908

 

1.45pm Remy Messadene: signature asymptotics, empirical processes, and optimal transport

Rough path theory provides one with the notion of signature, a graded family of tensors which characterise, up to a negligible equivalence class, and ordered stream of vector-valued data. In the last few years, use of the signature has gained traction in time-series analysis, machine learning, deep learning and more recently in kernel methods. In this work, we lay down the theoretical foundations for a connection between signature asymptotics, the theory of empirical processes, and Wasserstein distances, opening up the landscape and toolkit of the second and third in the study of the first. Our main contribution is to show that the Hambly-Lyons limit can be reinterpreted as a statement about the asymptotic behaviour of Wasserstein distances between two independent empirical measures of samples from the same underlying distribution. In the setting studied here, these measures are derived from samples from a probability distribution which is determined by geometrical properties of the underlying path.

 

2.30-3.00 Tea & coffee in the mezzananie

 

3-4pm Julien Berestycki: Extremal point process of the branching Brownian motion

 

 

 

Wed, 02 Mar 2022

10:00 - 12:00
Virtual

Controllability of smooth and non smooth vector fields

Franco Rampazzo
(Università degli Studi di Padova)
Further Information

Dates and Times (GMT):

10am – 12pm Monday’s 2nd, 9th, 16th, 23rd March

8am – 10am Friday’s 4th, 11th, 18th, 25th March

Course Length: 16 hrs total (8 x 2 hrs)

Click here to enroll

Abstract

Courserequirements: Basicmathematicalanalysis.

Examination and grading: The exam will consist in the presentation of some previously as- signed article or book chapter (of course the student must show a good knowledge of those issues taught during the course which are connected with the presentation.).

SSD: MAT/05 Mathematical Analysis
Aim: to make students aware of smooth and non-smooth controllability results and of some

applications in various fields of Mathematics and of technology as well.

Course contents:

Vector fields are basic ingredients in many classical issues of Mathematical Analysis and its applications, including Dynamical Systems, Control Theory, and PDE’s. Loosely speaking, controllability is the study of the points that can be reached from a given initial point through concatenations of trajectories of vector fields belonging to a given family. Classical results will be stated and proved, using coordinates but also underlying possible chart-independent interpretation. We will also discuss the non smooth case, including some issues which involve Lie brackets of nonsmooth vector vector fields, a subject of relatively recent interest.

Bibliography: Lecture notes written by the teacher.

Tue, 01 Mar 2022

15:30 - 16:30
Virtual

CLTs for Pair Dependent Statistics of Circular Beta Ensembles

Ander Aguirre
(University of California Davis)
Abstract

In this talk, we give an overview of recent results on the fluctuation of the statistic $\sum_{i\neq j} f(L_N(\theta_i-\theta_j))$ for the Circular Beta Ensemble in the global, mesoscopic and local regimes. This work is morally related to Johansson's 1988 CLT for the linear statistic $\sum_i f(\theta_i)$ and Lambert's subsequent 2019 extension to the mesoscopic regime. The special case of the CUE ($\beta=2$) in the local regime $L_N=N$ is motivated by Montgomery's study of pair correlations of the rescaled zeros of the Riemann zeta function. Our techniques are of combinatorial nature for the CUE and analytical for $\beta\neq2$.

Tue, 01 Mar 2022

14:30 - 15:00
L5

A theory of meta-factorization

Michal Karpowicz
(Warsaw University of Technology)
Abstract

We introduce meta-factorization, a theory that describes matrix decompositions as solutions of linear matrix equations: the projector and the reconstruction equation. Meta-factorization reconstructs known factorizations, reveals their internal structures, and allows for introducing modifications, as illustrated with SVD, QR, and UTV factorizations. The prospect of meta-factorization also provides insights into computational aspects of generalized matrix inverses and randomized linear algebra algorithms. The relations between the Moore-Penrose pseudoinverse, generalized Nyström method, and the CUR decomposition are revealed here as an illustration. Finally, meta-factorization offers hints on the structure of new factorizations and provides the potential of creating them.