Tue, 14 Jun 2016
16:30
L6

Counting Designs

Peter Keevash
(Oxford)
Abstract

A Steiner Triple System on a set X is a collection T of 3-element subsets of X such that every pair of elements of X is contained in exactly one of the triples in T. An example considered by Plücker in 1835 is the affine plane of order three, which consists of 12 triples on a set of 9 points. Plücker observed that a necessary condition for the existence of a Steiner Triple System on a set with n elements is that n be congruent to 1 or 3 mod 6. In 1846, Kirkman showed that this necessary condition is also sufficient. In 1974, Wilson conjectured an approximate formula for the number of such systems. We will outline a proof of this
conjecture, and a more general estimate for the number of Steiner systems. Our main tool is the technique of Randomised Algebraic Construction, which
we introduced to resolve a question of Steiner from 1853 on the existence of designs.

Tue, 14 Jun 2016

15:45 - 16:45
L4

Symplectic homology for cobordisms

Alexandru Oancea
(Jussieu)
Abstract

I will present a definition of symplectic homology groups for pairs of Liouville cobordisms with fillings, and explain how these fit into a formalism of homology theory similar to that of Eilenberg and Steenrod. This construction allows to understand form a unified point of view many structural results involving Floer homology groups, and yields new applications. Joint work with Kai Cieliebak.

Tue, 14 Jun 2016
15:00
L5

Exchanging a key: how hard can it be?

Cas Cremers
(University of Oxford)
Abstract
During the last thirty years, there have been many advances in the development of protocols for
authenticated key exchange. Although signature-based variants of Diffie-Hellman have been
known since the start of this development, dozens of new (two message) protocols are still proposed each
year. In this talk, we present some of the recent history of security definitions for Authenticated Key
Exchange, their many relatives, and discuss strengths and weaknesses. We motivate why there
has been little convergence in terms of protocols or security definitions. I will also present some of our 
recent work in this domain, including new stronger security definitions, and how to achieve them.
Tue, 14 Jun 2016
14:30
L6

Limits of Some Combinatorial Problems

Endre Csóka
(Budapest)
Abstract

We purify and generalize some techniques which were successful in the limit theory of graphs and other discrete structures. We demonstrate how this technique can be used for solving different combinatorial problems, by defining the limit problems of the Manickam--Miklós--Singhi Conjecture, the Kikuta–Ruckle Conjecture and Alpern's Caching Game.

Mon, 13 Jun 2016

16:00 - 17:00
L4

Enhancement of propagation in reaction-diffusion equations by a line of fast diffusion

Laurent Dietrich
(OxPDE, University of Oxford)
Abstract

we study a new mechanism of reaction-diffusion involving a line with fast diffusion, proposed to model the influence of transportation networks on biological invasions. 
We will be interested in the existence and uniqueness of traveling waves solutions, and especially focus on their velocity. We will show that it grows as the square root of the diffusivity on the line, generalizing and showing the robustness of a result by Berestycki, Roquejoffre and Rossi (2013), and provide a characterization of the growth ratio thanks to an hypoelliptic (a priori) degenerate system. 
Finally we will take a look at the dynamics and show that the waves attract a large class of initial data. In particular, we will shed light on a new mechanism of attraction which enables the waves to attract initial data with size independent of the diffusion on the line : this is a new result, in the sense than usually, enhancement of propagation has to be paid by strengthening the assumptions on the size of the initial data for invasion to happen.

Mon, 13 Jun 2016

15:45 - 16:45
C6

Homogenization for families of skew products

ALEXEY KOREPANOV
(Warwick University)
Abstract

 

We consider families of fast-slow skew product maps of the form \begin{align*}x_{n+1}   = x_n+\eps^2 a_\eps(x_n,y_n)+\eps b_\eps(x_n)v_\eps(y_n), \quad

y_{n+1}   = T_\eps y_n, \end{align*} where $T_\eps$ is a family of nonuniformly expanding maps, $v_\eps$ is of mean zero and the slow variables $x_n$ lie in $\R^d$.  Under an exactness assumption on $b_\eps$ (automatically satisfied in the cases $d=1$ and $b_\eps\equiv I_d$), we prove convergence of the slow variables to a limiting stochastic differential equation (SDE) as $\eps\to0$.   Our results include cases where the family of fast dynamical systems

$T_\eps$ consists of intermittent maps, unimodal maps (along the Collet-Eckmann parameters) and Viana maps.Similar results are obtained also for continuous time systems  \begin{align*} \dot x   =  \eps^2 a_\eps(x,y,\eps)+\eps b_\eps(x)v_\eps(y), \quad \dot y   =  g_\eps(y). \end{align*}

Here, as in classical Wong-Zakai approximation, the limiting SDE is of Stratonovich type $dX=\bar a(X)\,dt+b_0(X)\circ\,dW$ where $\bar a$ is the average of $a_0$

and $W$ is a $d$-dimensional Brownian motion.

 

Mon, 13 Jun 2016

15:45 - 16:45
L6

On groups with quadratic Dehn functions

Mark Sapir
(Vanderbilt University)
Abstract

I am going to discuss Rips' conjecture that all finitely presented groups with quadratic Dehn functions have decidable conjugacy problem.

This is a joint work with A.Yu. Olshanskii.
 

Mon, 13 Jun 2016

14:15 - 15:15
C6

Asymptotic of planar Yang-Mills fields

ANTOINE DAHLQVIST
(University of Cambridge)
Abstract

This talk will be about  Lévy processes on compact groups - discrete or continuous - and  two-dimensional analogues called pure Yang-Mills fields. The latter are indexed by  reduced loops of finite length in the plane and satisfy properties analogue to independence and stationarity of increments.     There is a one-to-one correspondance between Lévy processes invariant by adjunction and pure Yang-Mills fields. For Brownian motions, Yang-Mills fields stand for a rigorous version of the Euclidean Yang-Mills measure in two dimension.  I shall first sketch this correspondance for  Lévy processes with large jumps. Then, I will discuss two applications of an extension theorem, due to Thierry Lévy, similar to Kolmogorov extension theorem. On the one hand, it allows to construct pure Yang-Mills fields for any invariant Lévy process. On the other hand, when the group acts on vector spaces of large dimension, this theorem also allows to study the asymptotic behavior  of traces. The limiting objects yield a natural family of states on the group algebra of reduced loops.  We characterize among them the master field defined by Thierry Lévy by a continuity property.   This is  a joint work with Guillaume Cébron and Franck Gabriel.

Fri, 10 Jun 2016

16:00 - 17:00
L1

Owning a successful DPhil

Abstract
Wondering about how to organise your DPhil? How to make the most of your supervision meetings?

In this session we will explore these and other questions related to what makes a successful DPhil with help from faculty members, postdocs and DPhil students.

In the first half of the session Helen Byrne and Roger Heath-Brown will give short talks on their experiences as PhD students and supervisors. 

The second part of the session will be a panel discussion, and the panel will consist of Emily Cliff, Benjamin Green, Paul Taylor and Andrew Thompson. Senior faculty members will be kindly asked to leave the lecture theatre - to ensure that students feel comfortable with discussing their experiences with later year students and postdocs/research fellows without any senior faculty present.
 
At 5pm senior and junior faculty members, postdocs and students will reunite in the common room for the happy hour.

About the speakers and panel members:
Helen Byrne received her DPhil from Oxford under the supervision of John Norbury. She was a Professor of Applied Mathematics in Nottingham from 2003 to 2011, when she moved to Oxford where she is a Professor in Mathematical Biology.
Professor Helen Byrne
 
Roger Heath-Brown received his PhD from Cambridge under the supervision of Alan Baker. He moved to Oxford in 1979, where he has been a Professor of Pure Mathematics since 1999.
Roger Heath-Brown
 
Emily Cliff received her DPhil from Oxford in 2015 under the supervision of Kobi Kremnitzer, and she is now a postdoc in the Geometry and Representation Theory group.
No image
 
Benjamin Green and Paul Taylor are both fourth year DPhil students; Benjamin Green is a member of the Number Theory group,
No image
while Paul Taylor is in the Mathematical Biology group.
No image
 
Andrew Thompson received his PhD from the University of Edinburgh in 2012 under the supervision of Coralia Cartis and Jared Tanner, and he has been a Lecturer in Computational Mathematics at Oxford since 2014.
The photograph shows a young white man, with long brown hair, standing in front of a stone wall. He is wearing a light brown jacket, and is smiling.
 
Fri, 10 Jun 2016

13:00 - 14:30
L6

Time Inconsistency, Self Control and Portfolio Choice

Xunyu Zhou
(Mathematical Insitute, Oxford)
Abstract

Time inconsistency arises when one's preferences are not aligned
over time; thus time-inconsistent dynamic control is essentially
a self control problem. In this talk I will introduce several classes of time-inconsistent
dynamic optimisation problems together with their economic
motivations, and highlight the ways to address the time inconsistency.
I will then provide a solution to a continuous-time portfolio choice
model under the rank-dependent utility which is inherently time inconsistent.
Fri, 10 Jun 2016

11:00 - 12:00
C2

Period rings

K. Ardakov
(Oxford)
Abstract

This talk will give a description of the period ring B_dR of Fontaine, which uses de Rham algebra computations. 

This talk is part of the workshop on Beilinson's approach to p-adic Hodge  theory.

Fri, 10 Jun 2016

10:00 - 11:00
L4

Occurrence detection, correlation and classification among large numbers of time series

Alexander Denev
(Markit)
Abstract

Markit is a leading global provider of financial information services. We provide products that enhance transparency, reduce risk and improve operational efficiency.

We wish to find ways to automatically detect and label ‘extreme’ occurrences in a time series such as structural breaks, nonlinearities, and spikes (i.e. outliers). We hope to detect these occurrences in the levels, returns and volatility of a time series or any other transformation of it (e.g. moving average).

We also want to look for the same types of occurrences in the multivariate case in a set of time series through measures such as e.g. correlations, eigenvalues of the covariance matrix etc. The number of time series involved is of the order 3x10^6.

We wish to explain the appearance of an ‘extreme’ occurrence or a cluster of occurrences endogenously, as an event conditional on the values of the time series in the set, both contemporaneously and/or as conditional on their time lags.

Furthermore, we would like to classify the events that caused the occurrence in some major categories, if found e.g. shock to oil supply, general risk aversion, migrations etc. both algorithmically and by allowing human corrective judgement (which could become the basis for supervised learning).

Fri, 10 Jun 2016
10:00
N3.12

tba

Emily Cliff
Thu, 09 Jun 2016
17:30
L6

Finitary properties for a monoid arising from the model theory of $S$-acts

Victoria Gould
(York)
Abstract

*/ /*-->*/ A {\em monoid} is a semigroup with identity. A {\em finitary property for monoids} is a property guaranteed to be satisfied by any finite monoid. A good example is the maximal condition on the lattice of right ideals: if a monoid satisfies this condition we say it is {\em weakly right noetherian}. A monoid $S$ may be represented via mappings of sets or, equivalently and more concretely, by {\em (right) $S$-acts}. Here an $S$-act is a set $A$ together with a map $A\times S\rightarrow A$ where $(a,s)\mapsto as$, such that

for all $a\in A$ and $s,t\in S$ we have $a1=a$ and $(as)t=a(st)$. I will be speaking about finitary properties for monoids arising from model theoretic considerations for $S$-acts.

 

Let $S$ be a monoid and let $L_S$ be the first-order language of $S$-acts, so that $L_S$ has no constant or relational symbols (other than $=$) and a unary function symbol $\rho_s$ for each $s\in S$. Clearly $\Sigma_S$ axiomatises the class of $S$-acts, where

\[\Sigma_S=\big\{ (\forall x)(x\rho_s \rho_t=x\rho_{st}):s,t\in S\big\}\cup\{ (\forall x)(x\rho_1=x)

\}.\]

 

Model theory tells us that $\Sigma_S$

has a model companion $\Sigma_S^*$ precisely when the class

${\mathcal E}$ of existentially closed $S$-acts is axiomatisable and

in this case, $\Sigma_S^*$ axiomatises ${\mathcal E}$. An old result of Wheeler tells us that $\Sigma_S^*$ exists if and only if for every finitely generated right congruence $\mu$ on $S$, every finitely generated $S$-subact of $S/\mu$ is finitely presented, that is, $S$ is {\em right coherent}. Interest in right coherency also arises from other considerations such as {\em purity} for $S$-acts.

Until recently, little was known about right coherent monoids and, in particular, whether free monoids are (right) coherent.

I will present some work of Gould, Hartmann and Ru\v{s}kuc in this direction: specifically we answer positively the question for free monoids.

 

Where $\Sigma_S^*$ exists, it is known to be

stable, and is superstable if and only if $S$ is weakly right noetherian.

By using an algebraic description of types over $\Sigma_S^*$ developed in the 1980s by Fountain and Gould,

we can show that $\Sigma_S^*$ is totally

transcendental if and only if $S$ is weakly right noetherian and $S$ is {\em ranked}. The latter condition says that every right congruence possesses a finite Cantor-Bendixon rank with respect to the {\em finite type topology}.

Our results show that there is a totally transcendental theory of $S$-acts for which Morley rank of types does not coincide with $U$-rank, contrasting with the corresponding situation for modules over a ring.

Thu, 09 Jun 2016

16:00 - 17:00
C5

Cohomological Donaldson-Thomas Theory and quivers with potential

Aurelio Carlucci
(Oxford)
Abstract

Donaldson-Thomas theory was born as a mean to attach to Calabi-Yau 3-manifolds integers, invariant under small deformation of the complex structure. Subsequent evolutions have replaced integers with cohomological invariants, more flexible and with a broader range of applicable cases.

This talk is meant to be a gentle induction to the topic. We start with an introduction on virtual fundamental classes, and how they relate to deformation and obstruction spaces of a moduli space; then we pass on to the Calabi-Yau 3-dimensional case, stressing how some homological conditions are essential and can lead to generalisation. First we describe the global construction using virtual fundamental classes, then the local approach via the Behrend function and the virtual Euler characteristic.
We introduce quivers with potential, which provide a profitable framework in which to build DT-theory, as they are a source of moduli spaces locally presented as degeneracy loci. Finally, we overview the problem of categorification, introducing the DT-sheaf and showing how it relates to the numerical invariants.

Thu, 09 Jun 2016
16:00
L6

Almost Primes in Almost all Short Intervals

Joni Teräväinen
(University of Turku)
Abstract

When considering $E_k$ numbers (products of exactly $k$ primes), it is natural to ask, how they are distributed in short intervals. One can show much stronger results when one restricts to almost all intervals. In this context,  we seek the smallest value of c such that the intervals $[x,x+(\log x)^c]$ contain an $E_k$ number almost always. Harman showed that $c=7+\varepsilon$ is admissible for $E_2$ numbers, and this was the best known result also for $E_k$ numbers with $k>2$.

We show that for $E_3$ numbers one can take $c=1+\varepsilon$, which is optimal up to $\varepsilon$. We also obtain the value $c=3.51$ for $E_2$ numbers. The proof uses pointwise, large values and mean value results for Dirichlet polynomials as well as sieve methods.

Thu, 09 Jun 2016

16:00 - 17:00
L1

IAM Group Meeting

Javier Buldu, Dave Hewett
Abstract

Dave Hewett: Canonical solutions in wave scattering

By a "canonical solution" I have in mind a closed-form exact solution of the scalar wave equation in a simple geometry, for example the exterior of a circular cylinder, or the exterior of an infinite wedge. In this talk I hope to convince you that the study of such problems is (a) interesting; (b) important; and (c) a rich source of (difficult) open problems involving eigenfunction expansions, special functions, the asymptotic evaluation of integrals, and matched asymptotic expansions.

 

Thu, 09 Jun 2016

15:00 - 16:00
L4

A Decomposition of the Set of Enhanced Langlands Parameters for a p-adic Reductive Group

Anne-Marie Aubert
(Paris Jussieu)
Abstract

Enhanced Langlands parameters for a p-adic group G are pairs formed by a Langlands parameter for G and an irreducible character of a certain component group attached to the parameter. We will first introduce a notion
of cuspidality for these pairs. The cuspidal pairs are expected to correspond to the supercuspidal irreducible representations of G via the local Langlands correspondence.
We will next describe a construction of  a cuspidal support map for enhanced Langlands parameters, the key tool of which is an extension to disconnected complex Lie groups of the generalized Springer correspondence due to Lusztig.
Finally, we will use this map to decompose  the set of enhanced Langlands parameters into Bernstein series.
This is joint work with Ahmed Moussaoui and Maarten Solleveld.

Thu, 09 Jun 2016

14:00 - 15:00
Rutherford Appleton Laboratory, nr Didcot

Conditioning of Optimal State Estimation Problems

Prof. Nancy Nichols
(Reading University)
Abstract

To predict the behaviour of a dynamical system using a mathematical model, an accurate estimate of the current state of the system is needed in order to initialize the model. Complete information on the current state is, however, seldom available. The aim of optimal state estimation, known in the geophysical sciences as ‘data assimilation’, is to determine a best estimate of the current state using measured observations of the real system over time, together with the model equations. The problem is commonly formulated in variational terms as a very large nonlinear least-squares optimization problem. The lack of complete data, coupled with errors in the observations and in the model, leads to a highly ill-conditioned inverse problem that is difficult to solve.

To understand the nature of the inverse problem, we examine how different components of the assimilation system influence the conditioning of the optimization problem. First we consider the case where the dynamical equations are assumed to model the real system exactly. We show, against intuition, that with increasingly dense and precise observations, the problem becomes harder to solve accurately. We then extend these results to a 'weak-constraint' form of the problem, where the model equations are assumed not to be exact, but to contain random errors. Two different, but mathematically equivalent, forms of the problem are derived. We investigate the conditioning of these two forms and find, surprisingly, that these have quite different behaviour.

Thu, 09 Jun 2016
12:00
L6

Ancient solutions of Geometric Flows

Panagiota Daskalopoulos
(Columbia University)
Abstract
Some of the most important problems in geometric flows are related to the understanding of singularities. This usually happens through a blow up procedure near the potential singularity which uses the scaling properties of the partial differential equation involved. In the case of a parabolic equation the blow up analysis often leads to special solutions which are defined for all time $-\infty < t \leq T$ for some $T \leq +\infty$. The classification of such solutions often sheds new insight to the singularity analysis. 
In this talk we will discuss Uniqueness Theorems for ancient solutions to geometric partial differential equations such as the Mean curvature flow, the Ricci flow and the Yamabe flow. We will also discuss the construction of new ancient solutions from the parabolic gluing of one or more solitons.
Wed, 08 Jun 2016

16:00 - 17:00
C1

Finiteness properties of subgroups of direct products of surface groups

Claudio Llosa Isenrich
(Oxford)
Abstract

We will explain a result of Bridson, Howie, Miller and Short on the finiteness properties of subgroups of direct products of surface groups. More precisely, we will show that a subgroup of a direct product of n surface groups is of finiteness type $FP_n$ if and only if there is virtually a direct product of at most n finitely generated surface groups. All relevant notions will be explained in the talk.

 

Wed, 08 Jun 2016
16:00
C2

Intensional Partial Metric Spaces

Steve Matthews
(Warwick)
Abstract

Partial metric spaces generalise metric spaces by allowing self-distance
to be a non-negative number. Originally motivated by the goal to
reconcile metric space topology with the logic of computable functions
and Dana Scott's innovative theory of topological domains they are now
too rigid a form of mathematics to be of use in modelling contemporary
applications software (aka 'Apps') which is increasingly concurrent,
pragmatic, interactive, rapidly changing, and inconsistent in nature.
This talks aims to further develop partial metric spaces in order to
catch up with the modern computer science of 'Apps'. Our illustrative
working example is that of the 'Lucid' programming language,and it's
temporal generalisation using Wadge's 'hiaton'.

Wed, 08 Jun 2016
15:00
L4

Additive Combinatorics, Field Extensions, and Coding Theory.

Gilles Zémor
(University of Bordeaux)
Abstract
Additive combinatorics enable one to characterise subsets S of elements in a group such that S+S has

small cardinality. In particular a theorem of Vosper says that subsets of integers modulo a prime p

with minimal sumsets can only be arithmetic progressions, apart from some degenerate cases. We are

interested in q-analogues of these results, namely characterising subspaces S in some algebras such

that the linear span of its square S^2 has small dimension.

Analogues of Vosper's theorem will imply that such spaces will have bases consisting of elements in

geometric progression.

We derive such analogues in extensions of finite fields, where bounds on codes in the space of

quadratic forms play a crucial role. We also obtain that under appropriately formulated conditions,

linear codes with small squares for the component-wise product can only be generalized Reed-Solomon

codes.



Based on joint works with Christine Bachoc and Oriol Serra, and with Diego Mirandola.
Wed, 08 Jun 2016

11:30 - 12:30
N3.12

TBA

Alex Betts
(Oxford)
Tue, 07 Jun 2016

15:45 - 16:45
L4

Matrix factorisation of Morse-Bott functions

Constantin Teleman
(Oxford)
Abstract

For a holomorphic function (“superpotential”)  W: X —> C on a complex manifold X, one defines the (2-periodic) matrix factorisation category MF(X;W), which is supported on the critical locus Crit(W) of W. At a Morse singularity, MF(X;W) is equivalent to the category of modules over the Clifford algebra on the tangent space TX. It had been suggested by Kapustin and Rozansky that, for Morse-Bott W, MF(X;W) should be equivalent to the (2-periodicised) derived category of Crit(W), twisted by the Clifford algebra of the normal bundle. I will discuss why this holds when the first neighbourhood of Crit(W) splits, why it fails in general, and will explain the correct general statement.

Tue, 07 Jun 2016
14:30
L6

The Sharp Threshold for Making Squares

Paul Balister
(Memphis)
Abstract

Many of the fastest known algorithms for factoring large integers rely on finding subsequences of randomly generated sequences of integers whose product is a perfect square. Motivated by this, in 1994 Pomerance posed the problem of determining the threshold of the event that a random sequence of N integers, each chosen uniformly from the set
{1,...,x}, contains a subsequence, the product of whose elements is a perfect square. In 1996, Pomerance gave good bounds on this threshold and also conjectured that it is sharp.

In a paper published in Annals of Mathematics in 2012, Croot, Granville, Pemantle and Tetali significantly improved these bounds, and stated a conjecture as to the location of this sharp threshold. In recent work, we have confirmed this conjecture. In my talk, I shall give a brief overview of some of the ideas used in the proof, which relies on techniques from number theory, combinatorics and stochastic processes. Joint work with Béla Bollobás and Robert Morris.

Tue, 07 Jun 2016

12:30 - 13:30
Oxford-Man Institute

Complete-market stochastic volatility models (Joint seminar with OMI)

Mark Davis
(Imperial College, London)
Abstract
It is an old idea that incomplete markets should be completed by adding traded options as non-redundant
securities. While this is easy to show in a finite-state setting, getting a satisfactory theory in
continuous time has proved highly problematic. The goal is however worth pursuing since it would
provide arbitrage-free dynamic models for the whole volatility surface. In this talk we describe an
approach in which all prices in the market are functions of some underlying Markov factor process.
In this setting general conditions for market completeness were given in earlier work with J.Obloj,
but checking them in specific instances is not easy. We argue that Wishart processes are good
candidates for modelling the factor process, combining efficient computational methods with an
adequate correlation structure.
Mon, 06 Jun 2016

15:45 - 16:45
L6

Hausdorff dimension and complexity of Kleinian groups

​​​Yong Hou
(IAS Princeton)
Abstract

In this talk I'll give a general presentation of my recent work that a purely loxodromic Kleinian group of Hausdorff dimension<1 is a classical Schottky group. This gives a complete classification of all Kleinian groups of dimension<1. The proof uses my earlier result on the classification of Kleinian groups of sufficiently small Hausdorff dimension. This result in conjunction to another work (joint with Anderson) provides a resolution to Bers uniformization conjecture. No prior knowledge on the subject is assumed.

Mon, 06 Jun 2016

15:45 - 16:45
C6

A backward stochastic differential equation approach to singular stochastic control

YING HU
(Universite Rennes 1)
Abstract

Singular stochastic control problems ae largely studied in literature.The standard approach is to study the associated Hamilton-Jacobi-Bellman equation (with gradient constraint). In this work, we use a different approach (BSDE:Backward stochastic differntial equation approach) to show that the optimal value is a solution to BSDE.

The advantage of our approach is that we can study this kind of singular stochastic control with path-dependent coefficients

Mon, 06 Jun 2016
14:15
L4

Obstructions to positive scalar curvature via submanifolds of different codimension

Thomas Schick
(Gottingen)
Abstract

Question: Given a smooth compact manifold $M$ without boundary, does $M$
 admit a Riemannian metric of positive scalar curvature?

 We focus on the case of spin manifolds. The spin structure, together with a
 chosen Riemannian metric, allows to construct a specific geometric
 differential operator, called Dirac operator. If the metric has positive
 scalar curvature, then 0 is not in the spectrum of this operator; this in
 turn implies that a topological invariant, the index, vanishes.

  We use a refined version, acting on sections of a bundle of modules over a
 $C^*$-algebra; and then the index takes values in the K-theory of this
 algebra. This index is the image under the Baum-Connes assembly map of a
 topological object, the K-theoretic fundamental class.

 The talk will present results of the following type:

 If $M$ has a submanifold $N$ of codimension $k$ whose Dirac operator has
 non-trivial index, what conditions imply that $M$ does not admit a metric of
 positive scalar curvature? How is this related to the Baum-Connes assembly
 map? 

 We will present previous results of Zeidler ($k=1$), Hanke-Pape-S. ($k=2$),
 Engel and new generalizations. Moreover, we will show how these results fit
 in the context of the Baum-Connes assembly maps for the manifold and the
 submanifold. 
 

Mon, 06 Jun 2016

14:15 - 15:15
C6

Well-posedness and regularizing properties of stochastic Hamilton-Jacobi equations

PAUL GASSIAT
(Université Paris Dauphine)
Abstract

We consider fully nonlinear parabolic equations of the form $du = F(t,x,u,Du,D^2 u) dt + H(x,Du) \circ dB_t,$ which can be made sense of by the Lions-Souganidis theory of stochastic viscosity solutions. I will first recall the ideas of this theory, and will discuss more recent developments (including the use of rough path theory in this context). In the second part of my talk, I will explain how in the case where $H(x,Du)=|Du|^2$, the solution $u$ may enjoy better regularity properties than the solution to the unperturbed equation, which can be measured by (a pair of) solutions to a reflected SDE. Based on joint works with P. Friz, B. Gess, P.L. Lions and P. Souganidis.

 

Mon, 06 Jun 2016

14:15 - 15:15
L4

Obstructions to positive scalar curvature via submanifolds of different codimension

Thomas Schick
(Goettingen)
Abstract

We want to discuss a collection of results around the following Question: Given a smooth compact manifold $M$ without boundary, does $M$ admit a Riemannian metric of positive scalar curvature?

We focus on the case of spin manifolds. The spin structure, together with a chosen Riemannian metric, allows to construct a specific geometric differential operator, called Dirac operator. If the metric has positive scalar curvature, then 0 is not in the spectrum of this operator; this in turn implies that a topological invariant, the index, vanishes.
 

We use a refined version, acting on sections of a bundle of modules over a $C^*$-algebra; and then the index takes values in the K-theory of this algebra. This index is the image under the Baum-Connes assembly map of a topological object, the K-theoretic fundamental class.

The talk will present results of the following type:
 
If $M$ has a submanifold $N$ of codimension $k$ whose Dirac operator has non-trivial index, what conditions imply that $M$ does not admit a metric of positive scalar curvature? How is this related to the Baum-Connes assembly map? 

We will present previous results of Zeidler ($k=1$), Hanke-Pape-S. ($k=2$), Engel and new generalizations. Moreover, we will show how these results fit in the context of the Baum-Connes assembly maps for the manifold and the submanifold. 
 

Mon, 06 Jun 2016

12:00 - 13:00
L5

Black Holes and Higher Derivative Gravity

Kellogg Stelle
(Imperial College)
Abstract
Quantum corrections to the gravitational action generically include quadratic terms in the curvature. Moreover, these terms are distinguished with respect to other corrections in that their inclusion renders the theory renormalisable. The talk will discuss the changes their inclusion make to black hole solutions and the occurrence of other spherically symmetric solutions, such as wormholes and horizonless solutions.
Fri, 03 Jun 2016

16:00 - 17:00
L1

Eigenvectors of Tensors

Bernd Sturmfels
(UC Berkeley)
Abstract

Eigenvectors of square matrices are central to linear algebra. Eigenvectors of tensors are a natural generalization. The spectral theory of tensors was pioneered by Lim and Qi around 2005. It has numerous applications, and ties in closely with optimization and dynamical systems.  We present an introduction that emphasizes algebraic and geometric aspects

Fri, 03 Jun 2016
14:15
C3

The Weak Constraint Formulation of Bayesian Inverse Problems

Sean Lim
(Oxford)
Abstract

Inverse problems arise in many applications. One could solve them by adopting a Bayesian framework, to account for uncertainty which arises from our observations. The solution of an inverse problem is given by a probability distribution. Usually, efficient methods at hand to extract information from this probability distribution involves the solution of an optimization problem, where the objective function is highly nonconvex. In this talk, we explore a reformulation of inverse problems, which helps in convexifying the objective function. We also discuss a method to sample from this probability distribution.

Fri, 03 Jun 2016

11:00 - 12:00
C2

The de Rham algebra of a point in affine space

Damian Rössler
(Oxford)
Abstract

Following the notes and an article of B. Bhatt, we shall compute the de Rham algebra of the immersion of the zero-section of affine space over Z/p^nZ.

This talk is part of the workshop on Beilinson's approach to p-adic Hodge theory.

Fri, 03 Jun 2016

10:00 - 11:00
L4

Unanticipated interaction loops involving autonomous systems

James Sutherland
(Thales Security and Consulting)
Abstract

We are entering a world where unmanned vehicles will be common. They have the potential to dramatically decrease the cost of services whilst simultaneously increasing the safety record of whole industries.

Autonomous technologies will, by their very nature, shift decision making responsibility from individual humans to technology systems. The 2010 Flash Crash showed how such systems can create rare (but not inconceivably rare) and highly destructive positive feedback loops which can severely disrupt a sector.

In the case of Unmanned Air Systems (UAS), how might similar effects obstruct the development of the Commercial UAS industry? Is it conceivable that, like the high frequency trading industry at the heart of the Flash Crash, the algorithms we provide UAS to enable autonomy could decrease the risk of small incidents whilst increasing the risk of severe accidents? And if so, what is the relationship between probability and consequence of incidents?

Fri, 03 Jun 2016
10:00
N3.12

(Strongly) quasihereditary algebras

Teresa Conde
(Oxford)
Abstract

Quasihereditary algebras are the 'finite' version of a highest weight category, and they classically occur as blocks of the category O and as Schur algebras.

They also occur as endomorphism algebras associated to modules endowed with special filtrations. The quasihereditary algebras produced in these cases are very often strongly quasihereditary (i.e. their standard modules have projective dimension at most 1).

In this talk I will define (strongly) quasihereditary algebras, give some motivation for their study, and mention some nice strongly quasihereditary algebras found in nature.