Wed, 07 May 2025
16:00
L3

Drawing Knots on Surfaces

Samuel Ketchell
(University of Oxford)
Abstract

There is a well-known class of knots, called torus knots, which are those that can be drawn on a "standardly embedded" torus (one that separates the 3-sphere into two solid tori). A fairly natural property of other knots to consider is the genus necessary for that knot to be drawn on a standardly embedded genus g surface. This knot invariant has been studied under the name "embeddability". The goal of this talk is to introduce the invariant, look at some upper and lower bounds in terms of other invariants, and examine its behavior under connected sum.

Wed, 07 May 2025
11:00
L5

On statistical stationary solutions to the Schrödinger Map Equation in 1D

Dr Emanuela Gussetti
(Bielefeld University)
Abstract

In this talk, we discuss the existence of statistically stationary solutions to the Schrödinger map equation on a one-dimensional domain, with null Neumann boundary conditions, or on the one-dimensional torus. To approximate the Schrödinger map equation, we employ the stochastic  Landau-Lifschitz-Gilbert equation. By a limiting procedure à la Kuksin, we establish existence of a random initial datum, whose distribution is preserved under the dynamic of the deterministic equation. We explore the relationship between the Schrödinger map equation, the binormal curvature flow and the cubic non-linear Schrödinger equation. Additionally, we prove existence of statistically stationary solutions to the binormal curvature flow.[https://arxiv.org/abs/2501.16499]

This is a joint work with Professor M. Hofmanová.

Tue, 06 May 2025
16:00
L6

Random matrix insights into discrete moments

Christopher Hughes
(University of York)
Abstract

One curious little fact about the Riemann zeta function is that if you evaluate its derivatives at the zeros of zeta, then on average this is real and positive (even though the function is complex). This has been proven for some time now, but the aim of this talk is to generalise the question further (higher derivatives, complex moments) and gain insight using random matrix theory. The takeaway message will be that there are a multitude of different proof techniques in RMT, each with their own advantages

Tue, 06 May 2025
16:00
C3

Z-stability for twisted group C*-algebras of nilpotent groups

Eduard Vilalta Vila
( Chalmers University of Technology and University of Gothenburg)
Abstract

The landmark completion of the Elliott classification program for unital separable simple nuclear C*-algebras saw three regularity properties rise to prominence: Z-stability, a C*-algebraic analogue of von Neumann algebras' McDuffness; finite nuclear dimension, an operator algebraic version of having finite Lebesgue dimension; and strict comparison, a generalization of tracial comparison in II_1 factors. Given their relevance to classification, most of the investigations into their interplay have focused on the simple nuclear case.

 The purpose of this talk is to advertise the general study of these properties and discuss their applications both within and outside operator algebras. Concretely, I will explain how characterizing when certain twisted group C*-algebras are Z-stable can provide new partial solutions to a well-known problem in generalized time-frequency analysis; this is joint work with U. Enstad. If time allows, I will also briefly discuss how a different incarnation of tracial comparison (finite radius of comparison) for non-commutative tori relates to the existence of smooth Gabor frames; this last part is joint work with U. Enstad and also H. Thiel.

Tue, 06 May 2025
15:30
L4

Fukaya categories at singular values of the moment map

Ed Segal
(University College London)
Abstract

Given a Hamiltonian circle action on a symplectic manifold, Fukaya and Teleman tell us that we can relate the equivariant Fukaya category to the Fukaya category of a symplectic reduction.  Yanki Lekili and I have some conjectures that extend this story - in certain special examples - to singular values of the moment map. I'll also explain the mirror symmetry picture that we use to support our conjectures, and how we interpret our claims in Teleman's framework of `topological group actions' on categories.



 

Tue, 06 May 2025
15:00
L6

Sublinear bilipschitz equivalences and quasiisometries of Lie groups

Gabriel Pallier
Abstract

I will present some contributions to the quasiisometry classification of solvable Lie groups of exponential growth that we obtain using sublinear bilipschitz equivalences, which are generalized quasiisometries. This is joint work with Ido Grayevsky.

Tue, 06 May 2025

14:00 - 15:00
L4

Optimally packing Hamilton cycles in random directed digraphs

Adva Mond
(King's College London)
Abstract

At most how many edge-disjoint Hamilton cycles does a given directed graph contain? It is easy to see that one cannot pack more than the minimum in-degree or the minimum out-degree of the digraph. We show that in the random directed graph $D(n,p)$ one can pack precisely this many edge-disjoint Hamilton cycles, with high probability, given that $p$ is at least the Hamiltonicity threshold, up to a polylog factor.

Based on a joint work with Asaf Ferber.

Tue, 06 May 2025
13:00
L2

A Background-Independent Target Space Action for String Theory

Alex Frenkel
(Stanford)
Abstract
I will address the question of how background independent target space physics emerges in string theory. The point of view I will take is to identify the configuration space of target space with the space of 2d worldsheet QFTs. On-shell configurations are identified with c=0 worldsheet theories (i.e. a c=26 matter sector), and non-conformal QFTs correspond to generic off-shell configurations. I will demonstrate that a quantity built from the sphere partition function and the Zamolodchikov c-function has the correct properties to be a valid background-independent action on this configuration space, and is valid for all possible relevant and irrelevant deformations on the worldsheet (including non-minimally coupled and descendant operators). For the massless and tachyonic sectors in target space, this action is equivalent by field-redefinition to known actions developed by Tseytlin and collaborators in the 80s and 90s, constructed by taking derivatives with respect to the sphere partition function. This talk is based on recent work by Amr Ahmadain and Aron Wall (https://arxiv.org/abs/2410.11938).


 

Mon, 05 May 2025
16:00
L6

Modular arithmetic in the lambda-calculus

Maximilien Mackie
(University of Oxford)
Abstract

The lambda-calculus was invented to formalise arithmetic by encoding numbers and operations as abstract functions. We will introduce the lambda-calculus and present two encodings of modular arithmetic: the first is a recipe to quotient your favourite numeral system, and the second is purpose-built for modular arithmetic. A highlight of the second approach is that it does not require recursion i.e., it is defined without fixed-point operators. If time allows, we will also give an implementation of the Chinese remainder theorem which improves computational efficiency. 

Mon, 05 May 2025
15:30
L3

Weak Error of Dean-Kawasaki Equation with Smooth Mean-Field Interactions

Dr. Ana Djurdjevac
(Freie Universität Berlin)
Abstract

We consider the weak-error rate of the SPDE approximation by regularized Dean-Kawasaki equation with Itô noise, for particle systems exhibiting mean-field interactions both in the drift and the noise terms. Global existence and uniqueness of solutions to the corresponding SPDEs are established via the variational approach to SPDEs. To estimate the weak error, we employ the Kolmogorov equation technique on the space of probability measures. This work generalizes previous results for independent Brownian particles — where Laplace duality was used. In particular, we recover the same weak error rate as in that setting. This paper builds on joint work with X. Ji., H. Kremp and  N.  Perkowski.

Mon, 05 May 2025
15:30
L5

Systolic freedom

Alexey Balitskiy
(University of Luxembourg)
Abstract
Systolic geometry is a subfield of quantitative topology, which started in the late 40s from questions of the following sort: given a non-simply-connected surface (or a higher-dimensional Riemannian manifold), what is the length of the shortest non-contractible loop? This quantity is called the systole; another example of a systolic invariant is the cosystole, which is the smallest area of a codimension-1 submanifold that does not separate the manifold into several pieces. Answering a question of Gromov, in 1999 Freedman exhibited first examples of Riemannian metrics in which the product of the systole and the cosystole exceeds the volume; this manifests the phenomenon of systolic freedom. In our joint work with Hannah Alpert and Larry Guth, we showed that Freedman's examples are almost as "free" as possible, by bounding the systolic product by the volume raised to the power of $1+\epsilon$. I will give an overview of the systolic freedom phenomenon, including the flavors of proofs in the field.


 

Mon, 05 May 2025
14:15
L5

The state of the art in the formalisation of geometry

Heather Macbeth
(Imperial College London)
Abstract
The last ten years have seen extensive experimentation with computer formalisation systems such as Lean. It is now clear that these systems can express arbitrarily abstract mathematical definitions, and arbitrarily complicated mathematical proofs.
 
The current situation, then, is that everything is possible in principle -- and comparatively little is possible yet in practice! In this talk I will survey the state of the art in geometry (differential and algebraic). I will outline the current frontier of what has been formalised, and I will try to explain the main obstacles to progress.
Fri, 02 May 2025

14:00 - 15:00
L3

Some theoretical results about responses to inputs and transients in systems biology

Prof Eduardo Sontag
(Departments of Electrical and Computer Engineering and of Bioengineering Northeastern University )
Abstract

This talk will focus on systems-theoretic and control theory tools that help characterize the responses of nonlinear systems to external inputs, with an emphasis on how network structure “motifs” introduce constraints on finite-time, transient behaviors.  Of interest are qualitative features that are unique to nonlinear systems, such as non-harmonic responses to periodic inputs or the invariance to input symmetries. These properties play a key role as tools for model discrimination and reverse engineering in systems biology, as well as in characterizing robustness to disturbances. Our research has been largely motivated by biological problems at all scales, from the molecular (e.g., extracellular ligands affecting signaling and gene networks), to cell populations (e.g., resistance to chemotherapy due to systemic interactions between the immune system and tumors; drug-induced mutations; sensed external molecules triggering activations of specific neurons in worms), to interactions of individuals (e.g., periodic or single-shot non-pharmaceutical “social distancing'” interventions for epidemic control). Subject to time constraints, we'll briefly discuss some of these applications.

Fri, 02 May 2025

14:00 - 15:00
L1

Dealing with Exam Anxiety

Abstract

This session, led by the Counselling Service,  will guide you through a CBT informed understanding of anxiety, which may arise about exams. The session includes:

  • Psychoeducation - what is happening in the brain and body when we worry about exams
  • Paradox of worry – how more pressure, makes studying less likely
  • Experiential exercises – management strategies to maintain focus and engagement
  • Takeaway tools – a collection of managing stress skills for self-guided practice
  • Practical tips – enhance your exam preparation
Fri, 02 May 2025
13:00
L5

An algebraic derivation of Morse Complexes for poset-graded chain complexes

Ka Man Yim
(Cardiff University)

Note: we would recommend to join the meeting using the Teams client for best user experience.

Abstract

The Morse-Conley complex is a central object in information compression in topological data analysis, as well as the application of homological algebra to analysing dynamical systems. Given a poset-graded chain complex, its Morse-Conley complex is the optimal chain-homotopic reduction of the initial complex that respects the poset grading.  In this work, we give a purely algebraic derivation of the Morse-Conley complex using homological perturbation theory. Unlike Forman’s discrete Morse theory for cellular complexes, our algebraic formulation does not require the computation of acyclic partial matchings of cells.  We show how this algebraic perspective also yields efficient algorithms for computing the Conley complex.  This talk features joint work with Álvaro Torras Casas and Ulrich Pennig in "Computing Connection Matrices of Conley Complexes via Algebraic Morse Theory" (arXiv:2503.09301). 
 

Fri, 02 May 2025
12:00
L4

The structure of spatial infinity

Dr Mariem Magdy
(Perimeter)
Abstract
Penrose's conformal approach to the study of asymptotics leads to a singular conformal structure at spatial infinity, particularly in spacetimes with non-vanishing ADM mass. Two widely used formulations to resolve this singularity were developed by A. Ashtekar et al. and H. Friedrich. In this talk, I will discuss the details of these two approaches and their relation,  on Minkowski spacetime and in a more general setting.
 
Fri, 02 May 2025

12:00 - 13:00
Quillen Room

Arithmetic of Hyperelliptic Curves in Residue Characteristic 2

Tim Gehrunger
(ETH Zurich)
Abstract
The stable reduction of a hyperelliptic curve encodes many of its arithmetic invariants, such as the curve's conductor, minimal discriminant and Galois representation. 
In the case of odd residue characteristic, these models may be classified via their cluster pictures, which provides an explicit way to compute the invariants.
In the talk, we will explain recent progress towards a similar result in residue characteristic 2. In particular, we use marked models of the projective line to classify all genus 2 curves in residue characteristic 2.
Fri, 02 May 2025

11:00 - 12:00
L4

Do the shapes of tumour cell nuclei influence their infiltration?

Professor Karthik Bharath
(School of Mathematical Sciences University of Nottingham)
Abstract

The question can be formulated as a statistical hypothesis asserting that the distribution of the shapes of closed curves representing outlines of cell nuclei in a spatial domain is independent of the distribution of their locations. The key challenge in developing a procedure to test the hypothesis from a sample of spatially indexed curves (e.g. from an image) lies in how symmetries in the data are accounted for: shape of a curve is a property that is invariant to similarity transformations and reparameterization, and the shape space is thus an infinite-dimensional quotient space. Starting with a convenient geometry for the shape space developed over the last few years, I will discuss dependence measures and their estimates for spatial point processes with shape-valued marks, and demonstrate their use in testing for spatial independence of marks in a breast cancer application.  

Thu, 01 May 2025

17:00 - 18:00
L3

C*-algebras satisfying the UCT form an analytic set

Michał Szachniewicz
(University of Oxford)
Abstract

I will sketch a proof of the statement in the title and outline how it is related to Ehrenfeucht–Fraïssé games on C*-algebras. I will provide the relevant background on C*-algebras (and descriptive set theory) and explain how to construct a standard Borel category X that can play a role of their `moduli'. The theorem from the title is an application of the compactness theorem, for a suitable first-order theory whose models correspond to functors from X. If time permits, I will mention some related problems and connections with conceptual completeness for infinitary logic. This talk is based on several discussions with Ehud Hrushovski, Jennifer Pi, Mira Tartarotti, and Stuart White after a reading group on the paper "Games on AF-algebras" by Ben De Bondt, Andrea Vaccaro, Boban Velickovic and Alessandro Vignati.

Thu, 01 May 2025
16:00
Lecture Room 4

On periods and $L$-functions for $\mathrm{GU}(2,2) \times \mathrm{GL}(2)$

Antonio Cauchi
(University College Dublin)
Abstract

The study of periods of automorphic forms is a key theme in the Langlands program and has become an important tool to tackle various problems in Number Theory and Arithmetic Geometry.  For instance, Waldspurger formula and its generalisations have created a fertile ground for numerous arithmetic applications. In recent years, the conjectures of Sakellaridis and Venkatesh (and then Ben-Zvi, Sakellaridis, and Venkatesh) in the context of spherical varieties has led to a deeper understanding of automorphic periods and their relation to special values of $L$-functions. In this talk, I present work in progress aimed at looking at certain non-spherical cases. Precisely, I will describe a new integral representation of the degree 12 "exterior square x standard" $L$-function on generic cusp forms on $\mathrm{GU}(2,2) \times \mathrm{GL}(2)$ (or $\mathrm{GL}(4) \times \mathrm{GL}(2)$) and how it can be used to relate the non-vanishing of its central value to a certain cohomological period.  If time permits, I will describe how the same strategy applies to the case of $\mathrm{GSp}(6) \times \mathrm{GL}(2)$. This is joint work with Armando Gutierrez Terradillos.

Thu, 01 May 2025

14:00 - 15:00
Lecture Room 3

Adventures in structured matrix computations

Gunnar Martinsson
(UT Austin)
Abstract

Many matrices that arise in scientific computing and in data science have internal structure that can be exploited to accelerate computations. The focus in this talk will be on matrices that are either of low rank, or can be tessellated into a collection of subblocks that are either of low rank or are of small size. We will describe how matrices of this nature arise in the context of fast algorithms for solving PDEs and integral equations, and also in handling "kernel matrices" from computational statistics. A particular focus will be on randomized algorithms for obtaining data sparse representations of such matrices.

 

At the end of the talk, we will explore an unorthodox technique for discretizing elliptic PDEs that was designed specifically to play well with fast algorithms for dense structured matrices.

Thu, 01 May 2025
13:30

The geometry of Feynman integrals

Rodrigo Pitombo
Abstract
Feynman integrals are the essential building blocks of observables in perturbative Quantum Field Theories. As precision experiments in high-energy physics are becoming more common, understanding the structure of higher loop integrals has become very important from a phenomenology point of view. On the mathematical physics side, such investigations have led to profound connections to geometry. In particular, there is a correspondence between Feynman integrals and algebraic varieties and knowing what geometry a given Feynman integral corresponds to offers invaluable lessons in solving it. In this talk, I will start with a pedagogical review of modern methods to solve higher loop integrals. Then, with a simple example, I will show how one can infer the geometry associated with an integral and discuss some of the implications of this connection.


Junior Strings is a seminar series where DPhil students present topics of common interest that do not necessarily overlap with their own research area. This is primarily aimed at PhD students and post-docs but everyone is welcome.

Thu, 01 May 2025

12:00 - 13:00
L3

Do Plants Know Math?: Adventures of a Mathematician in Science Writing

Christophe Golé
(Smith College)
Further Information

Short Bio
Christophe Golé is a mathematician originally from France, with academic positions held at institutions including ETH Zurich and UC Santa Cruz. He is the author of Symplectic Twist Maps, a book on dynamical systems, and coined the term “ghost tori” in this context. His recent work focuses on mathematical biology, particularly plant pattern formation (phyllotaxis) and the occurrence of Fibonacci numbers in nature. He co-founded the NSF-funded 4 College Biomath Consortium, which led to the Five College Biomathematical Sciences Certificate Program.

Abstract

"Do Plants Know Math?" is the title of a book I co-authored with physicist Stéphane Douady, biologist Jacques Dumais, and writer Nancy Pick. Written for a general audience with a historical perspective, the book primarily explores phyllotaxis—the arrangement of leaves and other organs around plant stems—while also examining plant fractals, kirigami models of leaf formation, and related phenomena.

To our knowledge, phyllotaxis represents the first historical intersection of biological and mathematical research. Delving into its history uncovers remarkable treasures: phyllotaxis studies led to the first formulation of renormalization (van Iterson, 1907) and inspired one of the earliest computer programs (developed by Turing in the last years of his life).

In this talk, I will highlight several of these hidden historical gems while discussing the productive symbiosis between our scientific research on phyllotaxis and the creation of our book.

----
Thu, 01 May 2025

12:00 - 12:30
L4

High-order finite element methods for multicomponent convection-diffusion

Aaron Baier-Reinio
(Mathematical Institute (University of Oxford))
Abstract

Multicomponent fluids are mixtures of distinct chemical species (i.e. components) that interact through complex physical processes such as cross-diffusion and chemical reactions. Additional physical phenomena often must be accounted for when modelling these fluids; examples include momentum transport, thermality and (for charged species) electrical effects. Despite the ubiquity of chemical mixtures in nature and engineering, multicomponent fluids have received almost no attention from the finite element community, with many important applications remaining out of reach from numerical methods currently available in the literature. This is in spite of the fact that, in engineering applications, these fluids often reside in complicated spatial regions -- a situation where finite elements are extremely useful! In this talk, we present a novel class of high-order finite element methods for simulating cross-diffusion and momentum transport (i.e. convection) in multicomponent fluids. Our model can also incorporate local electroneutrality when the species carry electrical charge, making the numerical methods particularly desirable for simulating liquid electrolytes in electrochemical applications. We discuss challenges that arise when discretising the partial differential equations of multicomponent flow, as well as some salient theoretical properties of our numerical schemes. Finally, we present numerical simulations involving (i) the microfluidic non-ideal mixing of hydrocarbons and (ii) the transient evolution of a lithium-ion battery electrolyte in a Hull cell electrode.

Thu, 01 May 2025

11:00 - 12:00
C5

Introduction to Arakelov theory

Michał Szachniewicz
(University of Oxford)
Abstract

I will talk about preliminaries in Arakelov geometry. Also, a historical overview will be provided. This talk will be the basis of a later talk about the theory of globally valued fields.