Mon, 28 Oct 2019
15:45
L6

Towards Higher Morse-Cerf Theory: Classifying Constructible Bundles on R^n

Christoph Dorn
(Oxford)
Abstract

We present a programme towards a combinatorial language for higher (stratified) Morse-Cerf theory. Our starting point will be the interpretation of a Morse function as a constructible bundle (of manifolds) over R^1. Generalising this, we describe a surprising combinatorial classification of constructible bundles on flag foliated R^n (the latter structure of a "flag foliation” is needed for us to capture the notions of "singularities of higher Morse-Cerf functions" independently of differentiable structure). We remark that flag foliations can also be seen to provide a notion of directed topology and in this sense higher Morse-Cerf singularities are closely related to coherences in higher category theory. The main result we will present is the algorithmic decidability of existence of mutual refinements of constructible bundles. Using this result, we discuss how "combinatorial stratified higher Morse-Cerf theory" opens up novel paths to the computational treatment of interesting questions in manifold topology.

Mon, 28 Oct 2019

15:45 - 16:45
L3

Tail universality of Gaussian multiplicative chaos

MO DICK WONG
(University of Oxford)
Abstract

Abstract: Gaussian multiplicative chaos (GMC) has attracted a lot of attention in recent years due to its applications in many areas such as Liouville CFT and random matrix theory, but despite its importance not much has been known about its distributional properties. In this talk I shall explain the study of the tail probability of subcritical GMC and establish a precise formula for the leading order asymptotics, resolving a conjecture of Rhodes and Vargas.

Mon, 28 Oct 2019

14:15 - 15:15
L3

Signature Cumulants and Ordered Partitions

PATRIC BONNIER
(University of Oxford)
Abstract

The sequence of so-called Signature moments describes the laws of many stochastic processes in analogy with how the sequence of moments describes the laws of vector-valued random variables. However, even for vector-valued random variables, the sequence of cumulants is much better suited for many tasks than the sequence of moments. This motivates the study of so-called Signature cumulants. To do so, an elementary combinatorial approach is developed and used to show that in the same way that cumulants relate to the lattice of partitions, Signature cumulants relate to the lattice of so-called "ordered partitions". This is used to give a new characterisation of independence of multivariate stochastic processes.

Mon, 28 Oct 2019
14:15
L4

The Hitchin connection in (almost) arbitrary characteristic.

Johan Martens
(Edinburgh)
Further Information

The Hitchin connection is a flat projective connection on bundles of non-abelian theta-functions over the moduli space of curves, originally introduced by Hitchin in a Kahler context.  We will describe a purely algebra-geometric construction of this connection that also works in (most)positive characteristics.  A key ingredient is an alternative to the Narasimhan-Atiyah-Bott Kahler form on the moduli space of bundles on a curve.  We will comment on the connection with some related topics, such as the Grothendieck-Katz p-curvature conjecture.  This is joint work with Baier, Bolognesi and Pauly.

 

Mon, 28 Oct 2019
12:45

Duality walls and 3d S-fold SCFTs

Noppadol Mekareeya
(Milano Bicocca)
Abstract

A local SL(2,Z) transformation on the Type IIB brane configuration gives rise to an interesting class of 3d superconformal field theories, known as the S-fold SCFTs.  One of the interesting features of such a theory is that, in general, it does not admit a conventional Lagrangian description. Nevertheless, it can be described by a quiver diagram with a link being a superconformal field theory, known as the T(U(N)) theory. In this talk, we discuss various properties of the S-fold theories, including their supersymmetric indices, supersymmetry enhancement in the infrared, as well as several interesting dualities.
 

Fri, 25 Oct 2019

17:30 - 18:30
L1

Jon Chapman - Waves and resonance: from musical instruments to vacuum cleaners, via metamaterials and invisibility cloaks

Jon Chapman
(University of Oxford)
Further Information

Oxford Mathematics Public Lectures 

Jon Chapman - Waves and resonance: from musical instruments to vacuum cleaners, via metamaterials and invisibility cloaks.

Friday 25 October 2019

5.30pm-6.30pm, Mathematical Institute, Oxford

Please email @email to register.

Watch live:
https://facebook.com/OxfordMathematics
https://livestream.com/oxuni/chapman

Jon Chapman is Professor of Mathematics and its Applications in Oxford.

The Oxford Mathematics Public Lectures are generously supported by XTX Markets.

Fri, 25 Oct 2019

16:00 - 17:00
L1

The Four Dimensional Light Bulb Theorem

David Gabai
(Princeton)
Further Information

The Oxford Mathematics Colloquia are generously sponsored by Oxford University Press.

 

Abstract

We discuss a recent generalization of the classical 3-dimensional light bulb theorem to 4-dimensions. We connect this with fundamental questions about knotting of surfaces in 4-dimensional manifolds as well as new directions regarding knotting of 3-balls in 4-manifolds.

 

 

Fri, 25 Oct 2019

14:00 - 15:00
L6

Instability of sheared density interfaces

Tom Eaves
(University of British Columbia)
Abstract

Of the canonical stratified shear flow instabilities (Kelvin–Helmholtz, Holmboe-wave and Taylor–Caulfield), the Taylor–Caulfield instability (TCI) has received relatively little attention, and forms the focus of the presentation. A diagnostic of the linear instability dynamics is developed that exploits the net pseudomomentum to distinguish TCI from the other two instabilities for any given flow profile. Next, the nonlinear dynamics of TCI is shown across its range of unstable horizontal wavenumbers and bulk Richardson numbers. At small bulk Richardson numbers, a cascade of billow structures of sequentially smaller size may form. For large bulk Richardson numbers, the primary nonlinear travelling waves formed by the linear instability break down via a small-scale, Kelvin– Helmholtz-like roll-up mechanism with an associated large amount of mixing. In all cases, secondary parasitic nonlinear Holmboe waves appear at late times for high Prandtl number. Finally, a nonlinear diagnostic is proposed to distinguish between the saturated states of the three canonical instabilities based on their distinctive density–streamfunction and generalised vorticity–streamfunction relations.

Fri, 25 Oct 2019

14:00 - 15:00
L1

What does a good maths solution look like?

Dr Vicky Neale
Abstract

In this interactive workshop, we'll discuss what mathematicians are looking for in written solutions.  How can you set out your ideas clearly, and what are the standard mathematical conventions?  Please bring a pen or pencil! 

This session is likely to be most relevant for first-year undergraduates, but all are welcome.

Fri, 25 Oct 2019

14:00 - 15:00
L3

Embryogenesis: a cascade of dynamical systems

Professor Stanislav Shavrtsman
((Dept of Physical and Biological Engineering Princeton University)
Abstract

We aim to establish and experimentally test mathematical models of embryogenesis. While the foundation of this research is based on models of isolated developmental events, the ultimate challenge is to formulate and understand dynamical systems encompassing multiple stages of development and multiple levels of regulation. These range from specific chemical reactions in single cells to coordinated dynamics of multiple cells during morphogenesis. Examples of our dynamical systems models of embryogenesis – from the events in the Drosophila egg to the early stages of gastrulation – will be presented. Each of these will demonstrate what had been learned from model analysis and model-driven experiments, and what further research directions are guided by these models.

Fri, 25 Oct 2019

12:45 - 13:45
C3

Toric geometry

Sebastjan Cizel
(University of Oxford)
Fri, 25 Oct 2019

11:45 - 13:15
L3

InFoMM CDT Group Meeting

Clint Wong, Kristian Kiradjiev, Melanie Beckerleg, Giancarlo Antonucci
(Mathematical Institute)
Fri, 25 Oct 2019

10:00 - 11:00
L3

Maximum temperature rise of a thermally conductive cuboid subjected to a (potentially time dependent) power deposition profile

Wayne Arter
(CCFE)
Abstract

The challenge is to produce a reduced order model which predicts the maximum temperature rise of a thermally conducting object subjected to a power deposition profile supplied by an external code. The target conducting object is basically cuboidal but with one or more shaped faces and may have complex internal cooling structures, the deposition profile may be time dependent and exhibit hot spots and sharp edged shadows among other features. An additional feature is the importance of radiation which makes the problem nonlinear, and investigation of control strategies is also of interest. Overall there appears to be a sequence of problems of degree of difficulty sufficient to tax the most gifted student, starting with a line profile on a cuboid (quasi-2D) with linearised radiation term, and moving towards increased difficulty.

Thu, 24 Oct 2019

16:00 - 17:30
C5

The classifying space of the 1-dimensional homotopy bordism category

Jan Steinebrunner
Abstract

The homotopy bordism category hCob_d has as objects closed (d-1)-manifolds and as morphisms diffeomorphism classes of d-dimensional bordisms. This is a simplified version of the topologically enriched bordism category Cob_d whose classifying space B(Cob_d) been completely determined by Galatius-Madsen-Tillmann-Weiss in 2006. In comparison, little is known about the classifying space B(hCob_d).

In the first part of the talk I will give an introduction to bordism categories and their classifying spaces. In the second part I will identify B(hCob_1) showing, in particular, that the rational cohomology ring of hCob_1 is polynomial on classes \kappa_i in degrees 2i+2 for all i>=1. The seemingly simpler category hCob_1 hence has a more complicated classifying space than Cob_1.

Thu, 24 Oct 2019

16:00 - 17:00
L6

L-functions of Kloosterman sums

Javier Fresán
(Ecole Polytechnique)
Abstract

Guided by the analogy with certain moments of the Bessel function that appear as Feynman integrals, Broadhurst and Roberts recently studied a family of L-functions built up by assembling symmetric power moments of Kloosterman sums over finite fields. I will prove that these L-functions arise from potentially automorphic motives over the field of rational numbers, and hence admit a meromorphic continuation to the complex plane that satisfies the expected functional equation. If time permits, I will identify the periods of the corresponding motives with the Bessel moments and make a few comments about the special values of the L-functions. This is a joint work with Claude Sabbah and Jeng-Daw Yu.

Thu, 24 Oct 2019

16:00 - 17:30
L3

Modeling & large-scale simulation of thin film liquid crystal flows

Linda Cummings
(New Jersey Institute of Technology)
Abstract

Thin film flows of nematic liquid crystal will be considered, using the Leslie-Ericksen formulation for nematics. Our model can account for variations in substrate anchoring, which may exert a strong influence on patterns that arise in the flow. A number of simulations will be presented using an "in house" code, developed to run on a GPU. Current modeling directions involving flow over interlaced electrodes, so-called "dielectrowetting", will be discussed.

Thu, 24 Oct 2019

14:00 - 15:00
L4

Reliable Real Computing

Fredrik Johansson
(University of Bordeaux)
Abstract

Can we get rigorous answers when computing with real and complex numbers? There are now many applications where this is possible thanks to a combination of tools from computer algebra and traditional numerical computing. I will give an overview of such methods in the context of two projects I'm developing. The first project, Arb, is a library for arbitrary-precision ball arithmetic, a form of interval arithmetic enabling numerical computations with rigorous error bounds. The second project, Fungrim, is a database of knowledge about mathematical functions represented in symbolic form. It is intended to function both as a traditional reference work and as a software library to support symbolic-numeric methods for problems involving transcendental functions. I will explain a few central algorithmic ideas and explain the research goals of these projects.

Thu, 24 Oct 2019
13:00

Industrial agglomeration and diversification

Dr Samuel Heroy
(University of Oxford)
Abstract

As early as the 1920's Marshall suggested that firms co-locate in cities to reduce the costs of moving goods, people, and ideas. These 'forces of agglomeration' have given rise, for example, to the high tech clusters of San Francisco and Boston, and the automobile cluster in Detroit. Yet, despite its importance for city planners and industrial policy-makers, until recently there has been little success in estimating the relative importance of each Marshallian channel to the location decisions of firms.
Here we explore a burgeoning literature that aims to exploit the co-location patterns of industries in cities in order to disentangle the relationship between industry co-agglomeration and customer/supplier, labour and idea sharing. Building on previous approaches that focus on across- and between-industry estimates, we propose a network-based method to estimate the relative importance of each Marshallian channel at a meso scale. Specifically, we use a community detection technique to construct a hierarchical decomposition of the full set of industries into clusters based on co-agglomeration patterns, and show that these industry clusters exhibit distinct patterns in terms of their relative reliance on individual Marshallian channels.

The second part is to use industry relatedness, which we measure via a similar metric to co-location, to better understand the association of industrial emissions to city-industry agglomeration. Specifically, we see that industrial emissions (which are the largest source of greenhouse emissions in the US) are highly tied to certain industries, and furthermore that communities in the industry relatedness network tend to explain the tendency of particular industry clusters to produce emissions. This is important, because it limits cities' abilities to move to a greener industry basket as some cities may be more or less constrained to highly polluting industry clusters, while others have more potential for diversification away from polluting industries.

Thu, 24 Oct 2019

12:00 - 13:00
L4

Structure theory of RCD spaces up to codimension 1

Daniele Semola
(Scuola Normale Superiore di Pisa)
Abstract

The aim of this talk is to give an overview about the structure theory of finite dimensional RCD metric measure spaces. I will first focus on rectifiability, existence, uniqueness and constancy of the dimension of tangents up to negligible sets.
Then I will motivate why boundaries of sets of finite perimeter are natural codimension one objects to look at in this framework and present some recent structure results obtained in their study.
This is based on joint works with Luigi Ambrosio, Elia Bruè and Enrico Pasqualetto.
 

Wed, 23 Oct 2019
16:00
C1

Surfaces via subsurfaces: an introduction to Masur-Minsky

Harry Petyt
(University of Bristol)
Abstract

The mapping class group of a surface is a group of homeomorphisms of that surface, and these groups have been very well studied in the last 50 years. The talk will be focused on a way to understand such a group by looking at the subsurfaces of the corresponding surface; this is the so-called "Masur-Minsky hierarchy machinery". We'll finish with a non-technical discussion of hierarchically hyperbolic groups, which are a popular area of current research, and of which mapping class groups are important motivating examples. No prior knowledge of the objects involved will be assumed.

Tue, 22 Oct 2019

15:30 - 16:30
L6

Asymptotics of Toeplitz determinants with Fisher-Hartwig singularities and applications to random matrix theory

Benjamin Fahs
(Imperial College London)
Abstract

We discuss asymptotics of Toeplitz determinants with Fisher--Hartwig singularities, and give an overview of past and more recent results.
Applications include the study of asymptotics of certain statistics of the characteristic polynomial of the Circular Unitary Ensemble (CUE) of random matrices. In particular recent results in the study of Toeplitz determinants allow for a proof of a conjecture by Fyodorov and Keating on moments of averages of the characteristic polynomial of the CUE.
 

Tue, 22 Oct 2019

15:30 - 16:30
L4

Stability conditions and spectral networks

Fabian Haiden
(Oxford)
Abstract

Stability conditions on triangulated categories were introduced by Bridgeland, based on ideas from string theory. Conjecturally, they control existence of solutions to the deformed Hermitian Yang-Mills equation and the special Lagrangian equation (on the A-side and B-side of mirror symmetry, respectively). I will focus on the symplectic side and sketch a program which replaces special Lagrangians by "spectral networks", certain graphs enhanced with algebraic data. Based on joint work in progress with Katzarkov, Konstevich, Pandit, and Simpson.

Tue, 22 Oct 2019

14:30 - 15:00
L5

An optimal polynomial approximation of Brownian motion

James Foster
(Oxford)
Abstract

In this talk, I will present a strong (or pathwise) approximation of standard Brownian motion by a class of orthogonal polynomials. Most notably, the coefficients obtained from this expansion are independent Gaussian random variables. This will enable us to generate approximate Brownian paths by matching certain polynomial moments. To conclude the talk, I will discuss related works and applications to numerical methods for SDEs.
 

Tue, 22 Oct 2019
14:15
L4

Representations associated to gradations of colour Lie algebras

Philippe Meyer
(Oxford University)
Abstract

The notion of colour Lie algebra, introduced by Ree (1960), generalises notions of Lie algebra and Lie superalgebra. From an orthogonal representation V of a quadratic colour Lie algebra g, we give various ways of constructing a colour Lie algebra g’ whose bracket extends the bracket of g and the action of g on V. A first possibility is to consider g’=g⊕V and requires the cancellation of an invariant studied by Kostant (1999). Another construction is possible when the representation is ``special’’ and in this case the extension is of the form g’=g⊕sl(2,k)⊕V⊗k^2. Covariants are associated to special representations and satisfy to particular identities generalising properties studied by Mathews (1911) on binary cubics. The 7-dimensional fundamental representation of a Lie algebra of type G_2 and the 8-dimensional spinor representation of a Lie algebra of type so(7) are examples of special representations.