Inaugural OAC-manifolds Day
Abstract
For the programme see
For the programme see
Computing distinct solutions of differential equations -- Patrick Farrell
Abstract: TBA
Triangles and equations -- Yufei Zhao
Abstract: I will explain how tools in graph theory can be useful for understanding certain problems in additive combinatorics, in particular the existence of arithmetic progressions in sets of integers.
I will discuss how \zeta(3) occurs in quantum corrections to the Einstein action, and how this causes \zeta(3) to be seen in the moduli space of CY manifolds. I will also draw attention to the fact that the dependence of the moduli space on \zeta(3) has a p-adic analogue.
Topological Quantum Field Theories are functors from a category of bordisms of manifolds to (usually) some categorification of the notion of vector spaces. In this talk we will first discuss why mathematicians are interested in these in general and an overview of the relevant notions. After this we will have a closer look at the example of functors from the bordism category of 1-, 2- and 3-dimensional manifolds equipped with principal G-bundles, for G a finite group, to nice categorifications of vector spaces.
I will describe some diophantine problems and results motivated by the analogy between powers of the modular curve and powers of the multiplicative group in the context of the Zilber-Pink conjecture.
In this talk, we present a pathwise method to construct confidence
intervals on the value of some discrete time stochastic dynamic
programming equations, which arise, e.g., in nonlinear option pricing
problems such as credit value adjustment and pricing under model
uncertainty. Our method generalizes the primal-dual approach, which is
popular and well-studied for Bermudan option pricing problems. In a
nutshell, the idea is to derive a maximization problem and a
minimization problem such that the value processes of both problems
coincide with the solution of the dynamic program and such that
optimizers can be represented in terms of the solution of the dynamic
program. Applying an approximate solution to the dynamic program, which
can be precomputed by any algorithm, then leads to `close-to-optimal'
controls for these optimization problems and to `tight' lower and upper
bounds for the value of the dynamic program, provided that the algorithm
for constructing the approximate solution was `successful'. We
illustrate the method numerically in the context of credit value
adjustment and pricing under uncertain volatility.
The talk is based on joint work with C. Gärtner, N. Schweizer, and J.
Zhuo.
While there have been recent advances for analyzing the complex deterministic
behavior of systems with discontinuous dynamics, there are many open questions about
understanding and predicting noise-driven and noise-sensitive phenomena in the
non-smooth context. Stochastic effects can often change the picture dramatically,
particularly if multiple time scales are present. We demonstrate novel approaches
for exploring and explaining surprising phenomena driven by the interplay of
nonlinearities, delays, randomness, in specific applications with piecewise smooth
dynamics - nonlinear models of balance, relay control, and impacting dynamics.
Effective techniques typically depend on the combination of mathematical techniques,
multiple scales techniques, and phenomenological intuition from seemingly unrelated
canonical models of biophysics, mechanics, and chemical dynamics. The appropriate
strategy is not always immediately obvious from the area of application or model
type. This gap may follow from the limited attention that stochastic models with
discontinuous dynamics have received in the past, or it may be the reason for this
limited attention. Combining the geometrical perspective with asymptotic approaches
in physical and phase space appears to be a critical part of developing effective
approaches.
Quadrature is the term for the numerical evaluation of integrals. It's a beautiful subject because it's so accessible, yet full of conceptual surprises and challenges. This talk will review ten of these, with plenty of history and numerical demonstrations. Some are old if not well known, some are new, and two are subjects of my current research.
For a positive measure set of Klein-Gordon masses mu^2 > 0, we construct one-parameter families of solutions to the Einstein-Klein-Gordon equations bifurcating off the Kerr solution such that the underlying family of spacetimes are each an asymptotically flat, stationary, axisymmetric, black hole spacetime, and such that the corresponding scalar fields are non-zero and time-periodic. An immediate corollary is that for these Klein-Gordon masses, the Kerr family is not asymptotically stable as a solution to the Einstein-Klein-Gordon equations. This is joint work with Otis Chodosh.
The security of pairings-based cryptography relies on the difficulty of two problems: computing discrete logarithms over elliptic curves and, respectively, finite fields GF(p^n) when n is a small integer larger than 1. The real-life difficulty of the latter problem was tested in 2006 by a record in a field GF(p^3) and in 2014 and 2015 by new records in GF(p^2), GF(p^3) and GF(p^4). We will present the new methods of polynomial selection which allowed to obtain these records. Then we discuss the difficulty of DLP in GF(p^6) and GF(p^12) when p has a special form (SNFS) for which two theoretical algorithms were presented recently.
Smooth cubic fourfolds are linked to K3 surfaces via their Hodge structures, due to work of Hassett, and via Kuznetsov's K3 category A. The relation between these two viewpoints has recently been elucidated by Addington and Thomas.
We study both of these aspects further and extend them to twisted K3 surfaces, which in particular allows us to determine the group of autoequivalences of A for the general cubic fourfold. Furthermore, we prove finiteness results for cubics with equivalent K3 categories and study periods of cubics in terms of generalized K3 surfaces.
At the heart of the interior point method in optimization is a linear system solve, but how accurate must this solve be? The behaviour of such methods is well-understood when a direct solver is used, but the scale of problems being tackled today means that users increasingly turn to iterative methods to approximate its solution. Current suggestions of the accuracy required can be seen to be too stringent, leading to inefficiency.
In this talk I will give conditions on the accuracy of the solution in order to guarantee the inexact interior point method converges at the same rate as if there was an exact solve. These conditions can be shown numerically to be tight, in that performance degrades rapidly if a weaker condition is used. Finally, I will describe how the norms that appear in these condition are related to the natural norms that are minimized in several popular Krylov subspace methods. This, in turn, could help in the development of new preconditioners in this important field.
There is an obvious product-free subset of the symmetric group of density 1/2, but what about the alternating group? An argument of Gowers shows that a product-free subset of the alternating group can have density at most n^(-1/3), but we only know examples of density n^(-1/2 + o(1)). We'll talk about why in fact n^(-1/2 + o(1)) is the right answer, why
Gowers's argument can't prove that, and how this all fits in with a more general 'product mixing' phenomenon. Our tools include some nonabelian Fourier analysis, a version of entropy subadditivity adapted to the symmetric group, and a concentration-of-measure result for rearrangements of inner products.
The formal degree is a fundamental invariant of a discrete series representation which generalizes the notion of dimension from finite dimensional representations. For discrete series with unipotent cuspidal support, a formula for formal degrees, conjectured by Hiraga-Ichino-Ikeda, was verified by Opdam (2015). For split exceptional groups, this formula was previously known from the work of Reeder (2000). I will present a different interpretation of the formal degrees of unipotent discrete series in terms of the nonabelian Fourier transform (introduced by Lusztig in the character theory of finite groups of Lie type) and certain invariants arising in the elliptic theory of the affine Weyl group. This interpretation relates to recent conjectures of Lusztig about `almost characters' of p-adic groups. The talk is based on joint work with Eric Opdam.
Operators, functions, and functionals are combined in many problems of computational science in a fashion that has the same logical structure as is familiar for block matrices and vectors. It is proposed that the explicit consideration of such block structures at the continuous as opposed to discrete level can be a useful tool. In particular, block operator diagrams provide templates for spectral discretization by the rectangular differentiation, integration, and identity matrices introduced by Driscoll and Hale. The notion of the rectangular shape of a linear operator can be made rigorous by the theory of Fredholm operators and their indices, and the block operator formulations apply to nonlinear problems too, where the convention is proposed of representing nonlinear blocks as shaded. At each step of a Newton iteration, the structure is linearized and the blocks become unshaded, representing Fréchet derivative operators, square or rectangular. The use of block operator diagrams makes it possible to precisely specify discretizations of even rather complicated problems with just a few lines of pseudocode.
[Joint work with Nick Trefethen]
In this talk, I will review an inverse scattering construction of interacting integrable quantum field theories on two-dimensional Minkowski space and its ramifications. The construction starts from a given two-body S-matrix instead of a classical Lagrangean, and defines corresponding quantum field theories in a non-perturbative manner in two steps: First certain semi-local fields are constructed explicitly, and then the analysis of the local observable content is carried out with operator-algebraic methods (Tomita-Takesaki modular theory, split subfactor inclusions). I will explain how this construction solves the inverse scattering problem for a large family of interactions, and also discuss perspectives on extensions of this program to higher dimensions and/or non-integrable theories.
Consider the following question. Given a $k$-colouring of the positive integers, must there exist a solution to $x+y=z^2$ with $x,y,z$ all the same colour (and not all equal to 2)? Using $10$ colours a counterexample can be given to show that the answer is "no". If one instead asks the same question over $\mathbb{Z}/p\mathbb{Z}$ for some prime $p$, the answer turns out to be "yes", provided $p$ is large enough in terms of the number of colours used. I will talk about how to prove this using techniques developed by Ben Green and Tom Sanders. The main ingredients are a regularity lemma, a counting lemma and a Ramsey lemma.
For maps from surfaces there is a close connection between the area of the surface parametrised by the map and its Dirichlet energy and this translates also into a relation for the corresponding critical points. As such, when trying to find minimal surfaces, one route to take is to follow a suitable gradient flow of the Dirichlet energy. In this talk I will introduce such a flow which evolves both a map and a metric on the domain in a way that is designed to change the initial data into a minimal immersions and discuss some question concerning the existence of solutions and their asymptotic behaviour. This is joint work with Peter Topping.