14:00
Floer cohomology and Platonic solids
Abstract
We consider Fano threefolds on which SL(2,C) acts with a dense
open orbit. This is a finite list of threefolds whose classification
follows from the classical work of Mukai-Umemura and Nakano. Inside
these threefolds, there sits a Lagrangian space form given as an orbit
of SU(2). We prove this Lagrangian is non-displaceable by Hamiltonian
isotopies via computing its Floer cohomology over a field of non-zero
characteristic. The computation depends on certain counts of holomorphic
disks with boundary on the Lagrangian, which we explicitly identify.
This is joint work in progress with Jonny Evans.