Fri, 21 May 2010

12:00 - 13:00
Gibson 1st Floor SR

Hopf Algebras and BCFW recursion after Kreimer

Tim Adamo
(Oxford)
Abstract

Abstract: We will review Kreimer's construction of a Hopf algebra for Feynman graphs, and explore several aspects of this structure including its relationship with renormalization and the (trivial) Hochschild cohomology of the algebra.  Although Kreimer's construction is heavily tied with the language of renormalization, we show that it leads naturally to recursion relations resembling the BCFW relations, which can be expressed using twistors in the case of N=4 super-Yang-Mills (where there are no ultra-violet divergences).  This could suggest that a similar Hopf algebra structure underlies the supersymmetric recursion relations...

Fri, 21 May 2010 10:00 -
Fri, 28 May 2010 10:00
Gibson 1st Floor SR

Lecture Series: Scaling Dynamics in Aggregation Models

Professor Bob Pego
(Carnegie Mellon University)
Abstract

Clustering phenomena occur in numerous areas of science.

This series of lectures will discuss:

(i) basic kinetic models for clustering- Smoluchowski's coagulation equation, random shock clustering, ballistic aggregation, domain-wall merging;

(ii) Criteria for approach to self-similarity- role of regular variation;

(iii) The scaling attractor and its measure representation.

A particular theme is the use of methods and insights from probability in tandem with dynamical systems theory. In particular there is a

close analogy of scaling dynamics with the stable laws of probability and infinite divisibility.

Thu, 20 May 2010
17:00

The Changing Risks of Government Bonds

John Campbell
(Harvard University)
Abstract

In the Said Business School

The covariance between nominal bonds and stocks has varied considerably over recent decades and has even switched sign. It has been predominantly positive in periods such as the late 1970s and early 1980s when the economy has experienced supply shocks and the central bank has lacked credibility. It has been predominantly negative in periods such as the 2000s when investors have feared weak aggregate demand and deflation. This lecture discusses the implications of changing bond risk for the shape of the yield curve, the risk premia on bonds, and the relative pricing of nominal and inflation-indexed bonds.

Thu, 20 May 2010
17:00
L3

Semilattices, Domains, and Computability

Dana Scott
(Carnegie Mellon/Oxford)
Abstract

As everyone knows, one popular notion of a (Scott-Ersov) domain is defined as a bounded complete algebraic cpo. These are closely related to algebraic lattices: (i) A domain becomes an algebraic lattice with the adjunction of an (isolated) top element. (ii) Every non-empty Scott-closed subset of an algebraic lattice is a domain. Moreover, the isolated (= compact) elements of an algebraic lattice form a semilattice (under join). This semilattice has a zero element, and, provided the top element is isolated, it also has a unit element. The algebraic lattice itself may be regarded as the ideal completion of the semilattice of isolated elements. This is all well known. What is not so clear is that there is an easy-to-construct domain of countable semilattices giving isomorphic copies of all countably based domains. This approach seems to have advantages over both the so-called "information systems" or more abstract lattice formulations, and it makes definitions of solutions to domain equations very elementary to justify. The "domain of domains" also has a natural computable structure

Thu, 20 May 2010

16:30 - 17:30
L2

Change of Mind: Optical Control of Neural Circuits

Gero Miesenboeck
(Oxford)
Abstract

An emerging set of methods enables an experimental dialogue with biological systems composed of many interacting cell types---in particular, with neural circuits in the brain. These methods are sometimes called “optogenetic” because they employ light-responsive proteins (“opto-“) encoded in DNA (“-genetic”). Optogenetic devices can be introduced into tissues or whole organisms by genetic manipulation and be expressed in anatomically or functionally defined groups of cells. Two kinds of devices perform complementary functions: light-driven actuators control electrochemical signals; light-emitting sensors report them. Actuators pose questions by delivering targeted perturbations; sensors (and other measurements) signal answers. These catechisms are beginning to yield previously unattainable insight into the organization of neural circuits, the regulation of their collective dynamics, and the causal relationships between cellular activity patterns and behavior.

Thu, 20 May 2010

14:00 - 15:00
Rutherford Appleton Laboratory, nr Didcot

Numerical Methods for Monge-Kantorovich Transportation Problems

Dr Jan Van lent
(UWE Bristol)
Abstract

In the eighteenth century Gaspard Monge considered the problem of finding the best way of moving a pile of material from one site to another. This optimal transport problem has many applications such as mesh generation, moving mesh methods, image registration, image morphing, optical design, cartograms, probability theory, etc. The solution to an optimal transport problem can be found by solving the Monge-Amp\`{e}re equation, a highly nonlinear second order elliptic partial differential equation. Leonid Kantorovich, however, showed that it is possible to analyse optimal transport problems in a framework that naturally leads to a linear programming formulation. In recent years several efficient methods have been proposed for solving the Monge-Amp\`{e}re equation. For the linear programming problem, standard methods do not exploit the special properties of the solution and require a number of operations that is quadratic or even cubic in the number of points in the discretisation. In this talk I will discuss techniques that can be used to obtain more efficient methods.

Joint work with Chris Budd (University of Bath).

Thu, 20 May 2010

12:30 - 13:30
Gibson 1st Floor SR

Profile decompositions and applications to Navier-Stokes

Gabriel Koch
(OxPDE, University of Oxford)
Abstract

In this talk, we describe new profile decompositions for bounded sequences in Banach spaces of functions defined on $\mathbb{R}^d$. In particular, for "critical spaces" of initial data for the Navier-Stokes equations, we show how these can give rise to new proofs of recent regularity theorems such as those found in the works of Escauriaza-Seregin-Sverak and Rusin-Sverak. We give an update on the state of the former and a new proof plus new results in the spirit of the latter. The new profile decompositions are constructed using wavelet theory following a method of Jaffard.

Thu, 20 May 2010

12:00 - 13:00
SR1

Poisson quasi-Nijenhuis manifolds with background

Flavio Cordeiro
(Oxford)
Abstract

\paragraph{} Poisson quasi-Nijenhuis structures with background (PqNb structures) were recently defined and are one of the most general structures within Poisson geometry. On one hand they generalize the structures of Poisson-Nijenhuis type, which in particular contain the Poisson structures themselves. On the other hand they generalize the (twisted) generalized complex structures defined some years ago by Hitchin and Gualtieri. Moreover, PqNb manifolds were found to be appropriate target manifolds for sigma models if one wishes to incorporate certain physical features in the model. All these three reasons put the PqNb structures as a new and general object that deserves to be studied in its own right.

\paragraph{} I will start the talk by introducing all the concepts necessary for defining PqNb structures, making this talk completely self-contained. After a brief recall on Poisson structures, I will define Poisson-Nijenhuis and Poisson quasi-Nijenhuis manifolds and then move on to a brief presentation on the basics of generalized complex geometry. The PqNb structures then arise as the general structure which incorporates all the structures referred above. In the second part of the talk, I will define gauge transformations of PqNb structures and show how one can use this concept to construct examples of such structures. This material corresponds to part of the article arXiv:0912.0688v1 [math.DG].\\

\paragraph{} Also, if time permits, I will shortly discuss the appearing of PqNb manifolds as target manifolds of sigma models.

Wed, 19 May 2010

11:30 - 12:30
ChCh, Tom Gate, Room 2

A puzzle and a game

Owen Cotton-Barratt
(University of Oxford)
Tue, 18 May 2010

16:30 - 17:30
SR2

Phase boundary fluctuation and growth models

Alan Hammond
(University of Oxford)
Abstract

The Wulff droplet arises by conditioning a spin system in a dominant

phase to have an excess of signs of opposite type. These gather

together to form a droplet, with a macroscopic Wulff profile, a

solution to an isoperimetric problem.

I will discuss recent work proving that the phase boundary that

delimits the signs of opposite type has a characteristic scale, both

at the level of exponents and their logarithmic corrections.

This behaviour is expected to be shared by a broad class of stochastic

interface models in the Kardar-Parisi-Zhang class. Universal

distributions such as Tracy-Widom arise in this class, for example, as

the maximum behaviour of repulsive particle systems. time permitting,

I will explain how probabilistic resampling ideas employed in spin

systems may help to develop a qualitative understanding of the random

mechanisms at work in the KPZ class.

Tue, 18 May 2010

16:00 - 17:00
SR1

Quasi-trees

David Hume
(Oxford)
Tue, 18 May 2010

15:45 - 16:45
L3

(HoRSe seminar) ''Stability conditions on the local projective plane and $\Gamma_1(3)$-action II'

Emanuele Macri
(Utah)
Abstract

We report on joint work with Arend Bayer on the space of stability conditions for the canonical bundle on the projective plane.

We will describe a connected component of this space, generalizing and completing a previous construction of Bridgeland.

In particular, we will see how this space is related to classical results of Drezet-Le Potier on stable vector bundles on the projective plane. Using this, we can determine the group of autoequivalences of the derived category. As a consequence, we can identify a $\Gamma_1(3)$-action on the space of stability conditions, which will give a global picture of mirror symmetry for this example.

In the second hour we will give some details on the proof of the main theorem.

Tue, 18 May 2010

14:30 - 15:30
L3

Trading 'tween crossings, crosscaps, and handles

Dan Archdeacon
(University of Vermont)
Abstract

Given a graph we want to draw it in the plane; well we *want* to draw it in the plane, but sometimes we just can't. So we resort to various compromises. Sometimes we add crossings and try to minimize the crossings. Sometimes we add handles and try to minimize the number of handles. Sometimes we add crosscaps and try to minimize the number of crosscaps.

Sometimes we mix these parameters: add a given number of handles (or crosscaps) and try to minimize the number of crossings on that surface. What if we are willing to trade: say adding a handle to reduce the number of crossings? What can be said about the relative value of such a trade? Can we then add a second handle to get an even greater reduction in crossings? If so, why didn't we trade the second handle in the first place? What about a third handle?

The crossing sequence cr_1, cr_2, ... , cr_i, ... has terms the minimum number of crossings over all drawings of G on a sphere with i handles attached. The non-orientable crossing sequence is defined similarly. In this talk we discuss these crossing sequences.

By Dan Archdeacon, Paul Bonnington, Jozef Siran, and citing works of others.

Tue, 18 May 2010

14:00 - 15:00
SR1

(HoRSe seminar) 'Stability conditions on the local projective plane and $\Gamma_1(3)$-action I'

Emanuele Macri
(Utah)
Abstract

We report on joint work with Arend Bayer on the space of stability conditions for the canonical bundle on the projective plane.

We will describe a connected component of this space, generalizing and completing a previous construction of Bridgeland.

In particular, we will see how this space is related to classical results of Drezet-Le Potier on stable vector bundles on the projective plane. Using this, we can determine the group of autoequivalences of the derived category. As a consequence, we can identify a $\Gamma_1(3)$-action on the space of stability conditions, which will give a global picture of mirror symmetry for this example.

In the second hour we will give some details on the proof of the main theorem.

Mon, 17 May 2010

16:00 - 17:00
SR1

Modularity and Galois representations

Frank Gounelas
(University of Oxford)
Abstract

This talk is the second in a series of an elementary introduction to the ideas unifying elliptic curves, modular forms and Galois representations. I will discuss what it means for an elliptic curve to be modular and what type of representations one associates to such objects.