14:30
“Cross-intersecting families of permutations and the Cameron-Ku conjecture"
Abstract
We call a family of permutations A in Sn 'intersecting' if any two permutations in A agree in at least one position. Deza and Frankl observed that an intersecting family of permutations has size at most (n-1)!; Cameron and Ku proved that equality is attained only by families of the form {σ in Sn: σ(i)=j} for i, j in [n].
We will sketch a proof of the following `stability' result: an intersecting family of permutations which has size at least (1-1/e + o(1))(n-1)! must be contained in {σ in Sn: σ(i)=j} for some i,j in [n]. This proves a conjecture of Cameron and Ku.
In order to tackle this we first use some representation theory and an eigenvalue argument to prove a conjecture of Leader concerning cross-intersecting families of permutations: if n >= 4 and A,B is a pair of cross-intersecting families in Sn, then |A||B|
OxMOS Team Meeting
Abstract
17:00
Singular solutions for homogeneous quantum Boltzmann equations
15:45
Gaussian fluctuations for Plancherel partitions
Abstract
The limit shape of Young diagrams under the Plancherel measure was found by Vershik & Kerov (1977) and Logan & Shepp (1977). We obtain a central limit theorem for fluctuations of Young diagrams in the bulk of the partition 'spectrum'. More specifically, we prove that, under a suitable (logarithmic) normalization, the corresponding random process converges (in the FDD sense) to a Gaussian process with independent values. We also discuss the link with an earlier result by Kerov (1993) on the convergence to a generalized Gaussian process. The proof is based on the Poissonization of the Plancherel measure and an application of a general central limit theorem for determinantal point processes (joint work with Zhonggen Su).
14:15
The McKean stochastic game driven by a spectrally negative Levy process
Abstract
The McKean stochastic game (MSG) is a two-player version of the perpetual American put option. The MSG consists of two agents and a certain payoff function of an underlying stochastic process. One agent (the seller) is looking for a strategy (stopping time) which minimises the expected pay-off, while the other agent (the buyer) tries to maximise this quantity.
For Brownian motion one can find the value of the MSG and the optimal stopping times by solving a free boundary value problem. For a Lévy process with jumps the corresponding free boundary problem is more difficult to solve directly and instead we use fluctuation theory to find the solution of the MSG driven by a Lévy process with no positive jumps. One interesting aspect is that the optimal stopping region for the minimiser "thickens" from a point to an interval in the presence of jumps. This talk is based on joint work with Andreas Kyprianou (University of Bath).
Wall-crossing in two and four dimensions
Abstract
Computation in quotients of polynomial rings and enumerative geometry
Abstract
The real field with an irrational power function and a dense multiplicative subgroup
14:15
TBA
Abstract
Trading a financial asset involves a sequence of decisions to buy or sell the asset over time. A traditional trading strategy is to buy low and sell high. However, in practice, identifying these low and high levels is extremely challenging and difficult. In this talk, I will present our ongoing research on characterization of these key levels when the underlying asset price is dictated by a mean-reversion model. Our objective is to buy and sell the asset sequentially in order to maximize the overall profit. Mathematically, this amounts to determining a sequence of stopping times. We establish the associated dynamic programming equations (quasi-variational
inequalities) and show that these differential equations can be converted to algebraic-like equations under certain conditions.
The two threshold (buy and sell) levels can be found by solving these algebraic-like equations. We provide sufficient conditions that guarantee the optimality of our trading strategy.
14:00
17:00
Manipulating thin-film flows: From patterned substrates to evaporating systems
Abstract
The lecture will describe two variants of thin film flows, one involving wetting and the other involving evaporation. First, describing the spreading of mostly wetting liquid droplets on surfaces decorated with assemblies of micron-size cylindrical posts arranged in regular arrays. A variety of deterministic final shapes of the spreading droplets are obtained, including octagons, squares, hexagons and cricles. Dynamic considerations provide a "shape" diagram and suggest rules for control. It is then shown how these ideas can be used to explore (and control) splashing and to create polygonal hydraulic jumps. Second, the evaporation of volatile liquid drops is considered. Using experiments and theory it is shown how the sense of the internal circulation depends on the ratio of the liquid and substrate conductivities. The internal motions control the deposition patterns and so may impact various printing processes. These ideas are then applied to colloid deposition porous media.
16:00
Discrete analogues in harmonic analysis and the circle method
Abstract
Recently there has been increasing interest in discrete analogues of classical operators in harmonic analysis. Often the difficulties one encounters in the discrete setting require completely new approaches; the most successful current approaches are motivated by ideas from classical analytic number theory. This talk will describe a menagerie of new results for discrete analogues of operators ranging from twisted singular Radon transforms to fractional integral operators both on R^n and on the Heisenberg group H^n. Although these are genuinely analytic results, key aspects of the methods come from number theory, and this talk will highlight the roles played by theta functions, Waring's problem, the Hypothesis K* of Hardy and Littlewood, and the circle method.
An overview of the Jacobi-Davidson method
Abstract
The Jacobi-Davidson method, proposed by Sleijpen and Van der Vorst more than a decade ago, has been successfully used to numerically solve large matrix eigenvalue problems. In this talk we will give an introduction to and an overview of this method, and also point out some recent developments.
13:00
Optimal hedging of basis risk under partial information
Abstract
We consider the hedging of a claim on a non-traded asset using a correlated traded asset, when the agent does not know the true values of the asset drifts, a partial information scenario. The drifts are taken to be random variables with a Gaussian prior distribution. This is updated via a linear filter. The result is a full information model with random drifts. The utility infdifference price and hedge is characterised via the dual problem, for an exponential utility function. An approximation for the price and hedge is derived, valid for small positions in the claim. The effectiveness of this hedging strategy is examined via simulation experiments, and is shown to yield improved results over the Black-Scholes strategy which assumes perfect correlation.