Fri, 11 Feb 2022

14:00 - 15:00
Virtual

Data science topics related to neurogenomics

Prof Mark Gerstein
(Department of Molecular Biophysics and Biochemistry Yale University)
Abstract

My seminar will discuss various data-science issues related to
neurogenomics. First, I will focus on classic disorders of the brain,
which affect nearly a fifth of the world's population. Robust
phenotype-genotype associations have been established for several
psychiatric diseases (e.g., schizophrenia, bipolar disorder). However,
understanding their molecular causes is still a challenge. To address
this, the PsychENCODE consortium generated thousands of transcriptome
(bulk and single-cell) datasets from 1,866 individuals. Using these
data, we have developed interpretable machine learning approaches for
deciphering functional genomic elements and linkages in the brain and
psychiatric disorders. Specifically, we developed a deep-learning
model embedding the physical regulatory network to predict phenotype
from genotype. Our model uses a conditional Deep Boltzmann Machine
architecture and introduces lateral connectivity at the visible layer
to embed the biological structure learned from the regulatory network
and QTL linkages. Our model improves disease prediction (6X compared
to additive polygenic risk scores), highlights key genes for
disorders, and imputes missing transcriptome information from genotype
data alone. Next, I will look at the "data exhaust" from this activity
- that is, how one can find other things from the genomic analyses
than what is necessarily intended. I will focus on genomic privacy,
which is a main stumbling block in tackling problems in large-scale
neurogenomics. In particular, I will look at how the quantifications
of expression levels can reveal something about the subjects studied
and how one can take steps to sanitize the data and protect patient
anonymity. Finally, another stumbling block in neurogenomics is more
accurately and precisely phenotyping the individuals. I will discuss
some preliminary work we've done in digital phenotyping.

Fri, 11 Feb 2022

10:00 - 11:00
L4

Reflex Solar Concentrator

Prof. Hilary Ockendon, Dr. Mike Dadd
Further Information

Solar energy collectors are often expensive paraboloids of revolution but perfect focussing can also be achieved by using an ingenious combination of developable metal sheets.  The aim of this project is to study the effect of small imperfections on the efficiency of such a collector.

Thu, 10 Feb 2022

16:00 - 17:00
Virtual

Non-Parametric Estimation of Manifolds from Noisy Data

Yariv Aizenbud
(Yale University)
Further Information
Abstract

In many data-driven applications, the data follows some geometric structure, and the goal is to recover this structure. In many cases, the observed data is noisy and the recovery task is even more challenging. A common assumption is that the data lies on a low dimensional manifold. Estimating a manifold from noisy samples has proven to be a challenging task. Indeed, even after decades of research, there was no (computationally tractable) algorithm that accurately estimates a manifold from noisy samples with a constant level of noise.

In this talk, we will present a method that estimates a manifold and its tangent. Moreover, we establish convergence rates, which are essentially as good as existing convergence rates for function estimation.

This is a joint work with Barak Sober.

Thu, 10 Feb 2022
14:00
L6

Information Paradox (Part 1)

Pyry Kuusela & Marieke van Beest
(Oxford University)
Abstract

Junior Strings is a seminar series where DPhil students present topics of common interest that do not necessarily overlap with their own research area. This is primarily aimed at PhD students and post-docs but everyone is welcome

Thu, 10 Feb 2022
14:00
Virtual

Linear and Sublinear Time Spectral Density Estimation

Chris Musco
(New York University)
Abstract

I will discuss new work on practically popular algorithms, including the kernel polynomial method (KPM) and moment matching method, for approximating the spectral density (eigenvalue distribution) of an n x n symmetric matrix A. We will see that natural variants of these algorithms achieve strong worst-case approximation guarantees: they can approximate any spectral density to epsilon accuracy in the Wasserstein-1 distance with roughly O(1/epsilon) matrix-vector multiplications with A. Moreover, we will show that the methods are robust to *in accuracy* in these matrix-vector multiplications, which allows them to be combined with any approximation multiplication algorithm. As an application, we develop a randomized sublinear time algorithm for approximating the spectral density of a normalized graph adjacency or Laplacian matrices. The talk will cover the main tools used in our work, which include random importance sampling methods and stability results for computing orthogonal polynomials via three-term recurrence relations.

---

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact @email.

Thu, 10 Feb 2022

12:00 - 13:00
L1

Extracting Autism's Biomarkers in Placenta Using Multiscale Methods

Karamatou A. Yacoubou Djima
(University of Amherst)
Abstract

The placenta is the essential organ of maternal-fetal interactions, where nutrient, oxygen, and waste exchange occur. In recent studies, differences in the morphology of the placental chorionic surface vascular network (PCSVN) have been associated with developmental disorders such as autism. This suggests that the PCSVN could potentially serve as a biomarker for the early diagnosis and treatment of autism. Studying PCSVN features in large cohorts requires a reliable and automated mechanism to extract the vascular networks. In this talk, we present a method for PCSVN extraction. Our algorithm builds upon a directional multiscale mathematical framework based on a combination of shearlets and Laplacian eigenmaps and can isolate vessels with high success in high-contrast images such as those produced in CT scans. 

Wed, 09 Feb 2022

16:00 - 17:00
C3

Bieri-Neumann-Strebel invariants

Ismael Morales
(University of Oxford)
Abstract

The aim is introducing the Bieri-Neumann-Strebel invariants and showing some computations. These are geometric invariants of abstract groups that capture information about the finite generation of kernels of abelian quotients.

Wed, 09 Feb 2022

14:00 - 16:00
Virtual

Topics on Nonlinear Hyperbolic PDEs

Gui-Qiang G. Chen
(Oxford University)
Further Information

Dates/ Times (GMT): 2pm – 4pm Wednesdays 9th, 16th, 23rd Feb, and 2nd March

Course Length: 8 hrs total (4 x 2 hrs)

Abstract

Aimed: An introduction to the nonlinear theory of hyperbolic PDEs, as well as its close connections with the other areas of mathematics and wide range of applications in the sciences.

Tue, 08 Feb 2022

16:00 - 17:00
Virtual

Nowhere scattered C*-algebras

Eduard Vilalta
(Universitat Autònoma de Barcelona)
Abstract

Scattered topological spaces and their C*-analogs, known as scattered
C*-algebras, have been studied since the 70's and admit a number of
interesting characterizations. In this talk, I will define nowhere
scattered C*-algebras as, informally, those C*-algebras that are very
far from being scattered. I will then characterize this property in
various ways, such as the absence of nonzero elementary ideal-quotients,
topological properties of the spectrum, and divisibility properties in
the Cuntz semigroup. Further, I will also show that these divisibility
properties can be strengthened in the real rank zero or the stable rank
one case.

The talk is based on joint work with Hannes Thiel.

Tue, 08 Feb 2022

15:30 - 16:30
Virtual

Non-intersecting Brownian motion and compact Lie groups

Alex Little
(University of Bristol)
Abstract

In many contexts a correspondence has been found between the classical compact groups and certain boundary conditions -- $U(n)$ corresponding to periodic, $USp(2n)$ corresponding to Dirichlet, $SO(2n)$ corresponding to Neumann and $SO(2n+1)$ corresponding to Zaremba. In this talk, I will try to elucidate this correspondence in Lie theoretic terms and in the process relate random matrix theory to Yang-Mills theory, free fermions and modular forms.

Tue, 08 Feb 2022
14:00
Virtual

Large hypergraphs without tight cycles

Barnabas Janzer
(Cambridge)
Abstract

An $r$-uniform tight cycle of length $k>r$ is a hypergraph with vertices $v_1,\ldots,v_k$ and edges $\{v_i,v_{i+1},…,v_{i+r-1}\}$ (for all $i$), with the indices taken modulo $k$. Sós, and independently Verstraëte, asked the following question: how many edges can there be in an $n$-vertex $r$-uniform hypergraph if it contains no tight cycles of any length? In this talk I will review some known results, and present recent progress on this problem.

Tue, 08 Feb 2022

14:00 - 15:00
Virtual

FFTA: Spreading processes on metapopulation models with node2vec mobility

Lingqi Meng
(The State University of New York at Buffalo)
Abstract

A metapopulation model, composed of subpopulations and pairwise connections, is a particle-network framework for epidemic dynamics study. Individuals are well-mixed within each subpopulation and migrate from one subpopulation to another, obeying a given mobility rule. While different mobility rules in metapopulation models have been studied, few efforts have been made to compare the effects of simple (i.e., unbiased) random walks and more complex mobility rules. In this talk, we study susceptible-infectious-susceptible (SIS) dynamics in a metapopulation model, in which individuals obey a second-order parametric random-walk mobility rule called the node2vec. We transform the node2vec mobility rule to a first-order Markov chain whose state space is composed of the directed edges and then derive the epidemic threshold. We find that the epidemic threshold is larger for various networks when individuals avoid frequent backtracking or visiting a neighbor of the previously visited subpopulation than when individuals obey the simple random walk. The amount of change in the epidemic threshold induced by the node2vec mobility is generally not as significant as, but is sometimes comparable with, the one induced by the change in the diffusion rate for individuals.

arXiv links: https://arxiv.org/abs/2006.04904 and https://arxiv.org/abs/2106.08080

Tue, 08 Feb 2022

12:30 - 13:30
C5

Reinforcement Learning for Optimal Execution

Huining Yang
(Mathematical Institute (University of Oxford))
Abstract

Optimal execution of large positions over a given trading period is a fundamental decision-making problem for financial services. In this talk we explore reinforcement learning methods, in particular policy gradient methods, for finding the optimal policy in the optimal liquidation problem. We show results for the case where we assume a linear quadratic regulator (LQR) model for the underlying dynamics and where we apply the method to the data directly. The empirical evidence suggests that the policy gradient method can learn the global optimal solution for a larger class of stochastic systems containing the LQR framework, and that it is more robust with respect to model misspecification when compared to a model-based approach.

Tue, 08 Feb 2022
12:00
L5

A Mathematical Study of Hawking Radiation for Reissner Nordstrom black holes

Fred Alford
(Imperial College)
Abstract

In the first part of this talk, we will (briefly) derive the original calculation by Hawking in 1974 to determine the radiation given off by a black hole, giving the result in the form of an integral of a classical solution to the linear wave equation.
In the second part of the talk, we will take this integral as a starting point, and rigorously calculate the radiation given off by a forming spherically symmetric, charged black hole. We will then show that for late times in its formation, the radiation given off approaches the limit predicted by Hawking, including the extremal case. We will also calculate a bound on the rate at which this limit is approached.

Mon, 07 Feb 2022

16:30 - 17:30
Virtual

Update on Nonuniform Ellipticity

Giuseppe Mingione
(Università di Parma)
Abstract

Nonuniform Ellipticity is a classical topic in PDE, and regularity of solutions to nonuniformly elliptic and parabolic equations has been studied at length. I will present some recent results in this direction, including the solution to the longstanding issue of the validity of Schauder estimates in the nonuniformly elliptic case obtained in collaboration with Cristiana De Filippis. 

Mon, 07 Feb 2022

16:00 - 17:00
C2

TBA

Mon, 07 Feb 2022

15:30 - 16:30
L3

Quantative Hydrodynamic Limits of Stochastic Lattice Systems

CLEMENT MOUHOT
(University of Cambridge)
Abstract

 

I will present a simple abstract quantitative method for proving the hydrodynamic limit of interacting particle systems on a lattice, both in the hyperbolic and parabolic scaling. In the latter case, the convergence rate is uniform in time. This "consistency-stability" approach combines a modulated Wasserstein-distance estimate comparing the law of the stochastic process to the local Gibbs measure, together with stability estimates à la Kruzhkov in weak distance, and consistency estimates exploiting the regularity of the limit solution. It avoids the use of “block estimates” and is self-contained. We apply it to the simple exclusion process, the zero range process, and the Ginzburg-Landau process with Kawasaki dynamics. This is a joint work with Daniel Marahrens and Angeliki Menegaki (IHES).

Mon, 07 Feb 2022
15:30
C3

Free-by-cyclic groups and their automorphisms

Naomi Andrew
(Southampton University)
Abstract

Free-by-cyclic groups are easy to define – all you need is an automorphism of F_n. Their properties (for example hyperbolicity, or relative hyperbolicity) depend on this defining automorphism, but not always transparently. I will introduce these groups and some of their properties, and connect some to properties of the defining automorphism. I'll then discuss some ideas and techniques we can use to understand their automorphisms, including finding useful actions on trees and relationships with certain subgroups of Out(F_n). (This is joint work with Armando Martino.)

Mon, 07 Feb 2022
14:15
L5

Nonabelian Hodge theory and the decomposition theorem for 2-CY categories

Ben Davison
(Edinburgh)
Further Information

The talk will be both online (Teams) and in person (L5)

Abstract

Examples of 2CY categories include the category of coherent sheaves on a K3 surface, the category of Higgs bundles, and the category of modules over preprojective algebras or fundamental group algebras of compact Riemann surfaces.  Let p:M->N be the morphism from the stack of semistable objects in a 2CY category to the coarse moduli space.  I'll explain, using cohomological DT theory, formality in 2CY categories, and structure theorems for good moduli stacks, how to prove a version of the BBDG decomposition theorem for the exceptional direct image of the constant sheaf along p, even though none of the usual conditions for the decomposition theorem apply: p isn't projective or representable, M isn't smooth, the constant mixed Hodge module complex Q_M isn't pure...  As an application, I'll explain how this allows us to extend nonabelian Hodge theory to Betti/Dolbeault stacks.

Mon, 07 Feb 2022
12:45
Virtual

TBA

Michael Blake
(Bristol)
Mon, 07 Feb 2022

12:45 - 13:45
Virtual

On systems of maximal quantum chaos

Mike Blake
(University of Bristol)
Further Information

Note the unusual time and date

Abstract

A remarkable feature of chaos in many-body quantum systems is the existence of a bound on the quantum Lyapunov exponent. An important question is to understand what is special about maximally chaotic systems which saturate this bound. Here I will discuss a proposal for a `hydrodynamic' origin of chaos in such systems, and discuss hallmarks of maximally chaotic systems. In particular I will discuss how in maximally chaotic systems there is a suppression of exponential growth in commutator squares of generic few-body operators. This suppression appears to indicate that the nature of operator scrambling in maximally chaotic systems is fundamentally different to scrambling in non-maximally chaotic systems.

Fri, 04 Feb 2022
16:00
N4.01

Gravity factorized

Jorrit Kruthoff
(Stanford University)
Further Information

It is also possible to join virtually via Teams.

Abstract

There are various aspects of the AdS/CFT correspondence that are rather mysterious. For example, how does the gravitational theory know about a discrete boundary spectrum or how does it know moments of the partition function factorize, given the existence of connected (wormhole) geometries? In this talk I will discuss some recent efforts with Andreas Blommaert and Luca Iliesiu on these two puzzles in two dimensional dilaton gravities. These gravity theories are simple enough that we can understand and propose a resolution to the discreteness and factorization puzzles. I will show that a tiny but universal bilocal spacetime interaction in the bulk is enough to ensure factorization, whereas modifying the dilaton potential with tiny corrections gives a discrete boundary spectrum. We will discuss the meaning of these corrections and how they could be related to resolutions of the same puzzles in higher dimensions. 

Fri, 04 Feb 2022

16:00 - 17:00
L1

Careers outside of academia

Kim Moore (Faculty AI) and Sébastien Racanière (Google DeepMind)
Abstract

This event will take place on Teams. A link will be available 30 minutes before the session begins.

Sebastien Racaniere is a Staff Research Engineer at DeepMind. His current main interest is in the use of symmetries in Machine Learning. This offers diverse applications, for example in Neuroscience or Theoretical Physics (in particular Lattice Quantum Chromodynamics). Past interests, still in Machine Learning, include Reinforcement Learning (i.e. learning from rewards), generative models (i.e. learn to sample from probability distributions), and optimisation (i.e. how to find 'good' minima of functions)

 

Kim Moore is a senior data scientist at faculty, which is a data science consultancy based in London. As a data scientist, her role is to help our clients across sectors such as healthcare, government and consumer business solve their problems using data science and AI. This involves applying a variety of techniques, ranging from simple data analysis to designing and implementing bespoke machine learning algorithms. Kim will talk about day to day life at faculty, some interesting projects that I have worked on and why her mathematical background makes her a great data scientist.
Fri, 04 Feb 2022

14:00 - 15:00
Virtual

Representations of GL_2 and p-adic Symmetric Spaces

James Taylor
(University of Oxford)
Abstract

Let $F$ be a finite field or a $p$-adic field. One method of constructing irreducible representations of $G = GL_2(F)$ is to consider spaces on which $G$ naturally acts and look at the representations arising from invariants of these spaces, such as the action of $G$ on cohomology groups. In this talk, I will discuss how this goes for abstract representations of $G$ (when $F$ is finite), and smooth representations of $G$ (when $F$ is $p$-adic). The first space is an affine algebraic variety, and the second a tower of rigid spaces. I will then mention some recent results about how this tower allows us to construct new interesting $p$-adic representations of $G$, before explaining how trying to adapt these methods leads naturally to considerations about certain geometric properties of these spaces.

Fri, 04 Feb 2022

14:00 - 15:00
Virtual

A unifying theory of branching morphogenesis

Prof Ben Simons
(DAMTP University of Cambridge)
Abstract

The morphogenesis of branched tissues has been a subject of long-standing interest and debate. Although much is known about the signaling pathways that control cell fate decisions, it remains unclear how macroscopic features of branched organs, including their size, network topology and spatial patterning, are encoded. Based on large-scale reconstructions of the mouse mammary gland and kidney, we show that statistical features of the developing branched epithelium can be explained quantitatively by a local self-organizing principle based on a branching and annihilating random walk (BARW). In this model, renewing tip-localized progenitors drive a serial process of ductal elongation and stochastic tip bifurcation that terminates when active tips encounter maturing ducts. Finally, based on reconstructions of the developing mouse salivary gland, we propose a generalisation of BARW model in which tips arrested through steric interaction with proximate ducts reactivate their branching programme as constraints become alleviated through the expansion of the underlying matrix. This inflationary branching-arresting random walk model presents a general paradigm for branching morphogenesis when the ductal epithelium grows cooperatively with the matrix into which it expands.

 

 

Fri, 04 Feb 2022

11:00 - 12:00
L6

Computing the Extended Persistent Homology Transform of binary images

Katharine Turner
(Australian National University)
Further Information

PLEASE NOTE this seminar will be at 11am instead of 3pm.

Abstract

The Persistent Homology Transform, and the Euler Characteristic Transform are topological analogs of the Radon transform that can be used in statsistical shape analysis. In this talk I will consider an interesting variant called the Extended Persistent Homology Transform (XPHT) which replaces the normal persistent homology with extended persistent homology. We are particularly interested in the application of the XPHT to binary images. This paper outlines an algorithm for efficient calculation of the XPHT exploting relationships between the PHT of the boundary curves to the XPHT of the foreground.

Thu, 03 Feb 2022

16:00 - 17:00
Virtual

Optimal Thinning of MCMC Output

Chris Oates
(Newcastle University)
Further Information
Abstract

The use of heuristics to assess the convergence and compress the output of Markov chain Monte Carlo can be sub-optimal in terms of the empirical approximations that are produced. Here we consider the problem of retrospectively selecting a subset of states, of fixed cardinality, from the sample path such that the approximation provided by their empirical distribution is close to optimal. A novel method is proposed, based on greedy minimisation of a kernel Stein discrepancy, that is suitable for problems where heavy compression is required. Theoretical results guarantee consistency of the method and its effectiveness is demonstrated in the challenging context of parameter inference for ordinary differential equations. Software is available in the Stein Thinning package in Python, R and MATLAB.

Thu, 03 Feb 2022
14:00
Virtual

Defect CFTs

Maria Nocchi
(Oxford University)
Abstract

Junior Strings is a seminar series where DPhil students present topics of common interest that do not necessarily overlap with their own research area. This is primarily aimed at PhD students and post-docs but everyone is welcome

Thu, 03 Feb 2022
14:00
L3

Multigrid for climate- and weather prediction

Eike Mueller
(University of Bath)
Abstract

Climate- and weather prediction centres such as the Met Office rely on efficient numerical methods for simulating large scale atmospheric flow. One computational bottleneck in many models is the repeated solution of a large sparse system of linear equations. Preconditioning this system is particularly challenging for state-of-the-art discretisations, such as (mimetic) finite elements or Discontinuous Galerkin (DG) methods. In this talk I will present recent work on developing efficient multigrid preconditioners for practically relevant modelling codes. As reported in a REF2021 Industrial Impact Case Study, multigrid has already led to runtime savings of around 10%-15% for operational global forecasts with the Unified Model. Multigrid also shows superior performance in the Met Office next-generation LFRic model, which is based on a non-trivial finite element discretisation.

Thu, 03 Feb 2022

12:00 - 13:00
L1

The role of mechanics in solid tumor growth

Davide Ambrosi
(Politecnico di Torino)
Further Information

I am an applied mathematician interested in revisiting the classical mathematical methods of continuum mechanics to investigate new emerging problems in biology.

Abstract

The experimental evidence of the existence of a feedback between growth and stress in tumors poses challenging questions. First, the rheological properties (the constitutive equations) of aggregates of malignant cells are to identified. Secondly, the feedback law (the "growth law") that relates stress and mitotic and apoptotic rate should be understood. We address these questions on the basis of a theoretical analysis of in vitro experiments that involve the growth of tumor spheroids. We show that solid tumors exhibit several mechanical features of a poroelastic material, where the cellular component behaves like an elastic solid. When the solid component of the spheroid is loaded at the boundary, the cellular aggregate grows up to an asymptotic volume that depends on the exerted compression.
Residual stress shows up when solid tumors are radially cut, highlighting a peculiar tensional pattern.
The features of the mechanobiological system can be explained in terms of a feedback of mechanics on the cell proliferation rate as modulated by the availability of nutrient, that is radially damped by the balance between diffusion and consumption. The volumetric growth profiles and the pattern of residual stress can be theoretically reproduced assuming a dependence of the target stress on the concentration of nutrient which is specific of the malignant tissue.

Wed, 02 Feb 2022
18:30
L1

Castalian String Quartet - Mozart & Mendelssohn

Further Information

As part of our partnership with the Faculty of Music in Oxford, we are delighted to welcome the Castalian String Quartet to the Andrew Wiles Building. The  Quartet holds the Hans Keller String Quartet Residency at the Faculty of Music for the academic years 2021-24.

Mozart - String Quartet No. 15 in D minor, K. 421

Fanny Mendelssohn - String Quartet in E flat major

Interval

Felix Mendelssohn – String Quartet No. 6 in F minor, Op. 80

The Castalian String Quartet presents a programme of three string quartets from Viennese composers. Starting with one of Mozart's quartet tributes to Haydn, his String Quartet No. 15 in D minor; this is followed by one of the earliest known string quartets written by a woman composer, Fanny Mendelssohn's String Quartet in E flat major; and ending with Felix Mendelssohn’s final String Quartet, his last major work, powerful and tempestuous.

The concert will be preceded by a talk by Dr Sebastian Wedler at 6.30pm. The concert will start at 7.30pm.

Mathematical Institute, Woodstock Road, Oxford OX2 6GG.

Tickets £15, free entry for all under 21s. Book tickets here.

[[{"fid":"64700","view_mode":"media_397x223","fields":{"class":"media-element file-small-image-100px-h","data-delta":"1","format":"media_397x223","field_file_image_alt_text[und][0][value]":false,"field_file_image_title_text[und][0][value]":false},"type":"media","field_deltas":{"1":{"class":"media-element file-small-image-100px-h","data-delta":"1","format":"media_397x223","field_file_image_alt_text[und][0][value]":false,"field_file_image_title_text[und][0][value]":false}},"attributes":{"class":"media-element file-media-397x223","data-delta":"1"}}]]

 

Wed, 02 Feb 2022

16:00 - 17:00
N3.12

Higher Teichmüller spaces

Nathaniel Sagman
(Caltech)
Abstract

The Teichmüller space for a closed surface of genus g is the space of marked complex/hyperbolic structures on the surface. Teichmüller space also identifies with the space of Fuchsian representations of the fundamental group into PSL(2,R) (mod conjugation). Higher Teichmüller theory concerns special representations of surface (or hyperbolic) groups into higher rank Lie groups of non-compact type.

Wed, 02 Feb 2022

13:15 - 15:15
Imperial College

CDT in Mathematics of Random Systems February Workshop

Alessandro Micheli, Terence Tsui, Dr Barbara Bravi
(Imperial College London and University of Oxford)
Further Information

For remote access please contact lydia.noa@imperial.ac.uk

13.20 – 13.50 Alessandro Micheli (CDT Student, Imperial College London)
Closed-loop Nash competition for liquidity

 

13.50 – 14.20 Terence Tsui (CDT Student, University of Oxford)

Uncovering Genealogies of Populations with Local Density Regulation

 

14.25 - 15:10 Dr Barbara Bravi (Lecturer in Biomathematics, Department of Mathematics, Imperial College London)

Path integral approaches to model reduction in biochemical networks

Tue, 01 Feb 2022
14:00
Virtual

Recoloring version of Hadwiger's conjecture

Clément Legrand-Duchesne
(LaBRI Bordeaux)
Abstract

Las Vergnas and Meyniel conjectured in 1981 that all the $t$-colorings of a $K_t$-minor free graph are Kempe equivalent. This conjecture can be seen as a reconfiguration counterpoint to Hadwiger's conjecture, although it neither implies it or is implied by it. We prove that for all positive $\epsilon$, for all large enough $t$, there exists a graph with no $K_{(2/3 + \epsilon)t}$ minor whose $t$-colorings are not all Kempe equivalent, thereby strongly disproving this conjecture, along with two other conjectures of the same paper.

Tue, 01 Feb 2022
14:00
L5

Numerical quadrature for singular integrals on fractals

Dave Hewett
(University College London)
Abstract

How can one integrate singular functions over fractals? And why would one want to do this? In this talk I will present a general approach to numerical quadrature on the compact attractor of an iterated function system of contracting similarities, where integration is with respect to the relevant Hausdorff measure. For certain singular integrands of logarithmic or algebraic type the self-similarity of the integration domain can be exploited to express the singular integral exactly in terms of regular integrals that can be approximated using standard techniques. As an application we show how this approach, combined with a singularity-subtraction technique, can be used to accurately evaluate the singular double integrals that arise in Hausdorff-measure Galerkin boundary element methods for acoustic wave scattering by fractal screens. This is joint work with Andrew Gibbs (UCL) and Andrea Moiola (Pavia).

Tue, 01 Feb 2022

14:00 - 15:00
Virtual

Multiscale analysis of the COVID-19 pandemic from cells to society: a (multilayer) network approach

Manlio De Domenico
(University of Padua)
Further Information

[[{"fid":"64806","view_mode":"default","fields":{"format":"default"},"link_text":"NetowrksSeminar_1Feb.pdf","type":"media","field_deltas":{"2":{"format":"default"}},"attributes":{"class":"media-element file-default","data-delta":"2"}}]]

Abstract

In this talk we will show the application of (multilayer) network science to a wide spectrum of problems related to the ongoing COVID-19 pandemic, ranging from the molecular to the societal scale. Specifically, we will discuss our recent results about how network analysis: i) has been successfully applied to virus-host protein-protein interactions to unravel the systemic nature of SARS-CoV-2 infection; ii) has been used to gain insights about the potential role of non-compliant behavior in spreading of COVID-19; iii) has been crucial to assess the infodemic risk related to the simultaneous circulation of reliable and unreliable information about COVID-19.

References:

Assessing the risks of "infodemics" in response to COVID-19 epidemics
R. Gallotti, F. Valle, N. Castaldo, P. Sacco, M. De Domenico, Nature Human Behavior 4, 1285-1293 (2020)

CovMulNet19, Integrating Proteins, Diseases, Drugs, and Symptoms: A Network Medicine Approach to COVID-19
N. Verstraete, G. Jurman, G. Bertagnolli, A. Ghavasieh, V. Pancaldi, M. De Domenico, Network and Systems Medicine 3, 130 (2020)

Multiscale statistical physics of the pan-viral interactome unravels the systemic nature of SARS-CoV-2 infections
A. Ghavasieh, S. Bontorin, O. Artime, N. Verstraete, M. De Domenico, Communications Physics 4, 83 (2021)

Individual risk perception and empirical social structures shape the dynamics of infectious disease outbreaks
V. D'Andrea, R. Gallotti, N. Castaldo, M. De Domenico, To appear in PLOS Computational Biology (2022)

Mon, 31 Jan 2022

16:30 - 17:30
Virtual

Geometric measure theory on singular spaces with lower Ricci bounds and the isoperimetric problem

Daniele Semola
(University of Oxford)
Abstract

The aim of this talk is to present some recent developments of Geometric Measure Theory on non smooth spaces with lower Ricci Curvature bounds, mainly related to the first and second variation formula for the area, and their applications to the isoperimetric problem on non compact manifolds. The reinterpretation of some classical results in Geometric Analysis in a low regularity setting, combined with the compactness and stability theory for spaces with lower curvature bounds, leads to a series of new geometric inequalities for smooth, non compact Riemannian manifolds. The talk is based on joint works with Andrea Mondino, Gioacchino Antonelli, Enrico Pasqualetto and Marco Pozzetta.

Mon, 31 Jan 2022

16:00 - 17:00
L5

The Probabilistic Zeta Function of a Finite Lattice

Besfort Shala
Abstract

In this talk, we present our study of Brown’s definition of the probabilistic zeta function of a finite lattice, and propose a natural alternative that may be better-suited for non-atomistic lattices. The probabilistic zeta function admits a general Dirichlet series expression, which need not be ordinary. We investigate properties of the function and compute it on several examples of finite lattices, establishing connections with well-known identities. Furthermore, we investigate when the series is an ordinary Dirichlet series. Since this is the case for coset lattices, we call such lattices coset-like. In this regard, we focus on partition lattices and d-divisible partition lattices and show that they typically fail to be coset-like. We do this by using the prime number theorem, establishing a connection with number theory.

Mon, 31 Jan 2022

15:30 - 16:30
L3

Distribution dependent SDEs driven by additive continuous and fractional Brownian noise

AVI MAYORCAS
(University of Cambridge)
Abstract

Distribution dependent equations (or McKean—Vlasov equations) have found many applications to problems in physics, biology, economics, finance and computer science. Historically, equations with either Brownian noise or zero noise have received the most attention; many well known results can be found in the monographs by A. Sznitman and F. Golse. More recently, attention has been paid to distribution dependent equations driven by random continuous noise, in particular the recent works by M. Coghi, J-D. Deuschel, P. Friz & M. Maurelli, with applications to battery modelling. Furthermore, the phenomenon of regularisation by noise has received new attention following the works of D. Davie and M. Gubinelli & R. Catellier using techniques of averaging along rough trajectories. Building on these ideas I will present recent joint work with L. Galeati and F. Harang concerning well-posedness and stability results for distribution dependent equations driven first by merely continuous noise and secondly driven by fractional Brownian motion.

 

Mon, 31 Jan 2022
15:30
Virtual

Localization and decomposition

Rufus Willett
(Hawaii)
Abstract

Let X be a closed Riemannian manifold, and represent the algebra C(X) of continuous functions on X on the Hilbert space L^2(X) by multiplication.  Inspired by the heat kernel proof of the Atiyah-Singer index theorem, I'll explain how to describe K-homology (i.e. the dual theory to Atiyah-Hirzebruch K-theory) in terms of parametrized families of operators on L^2(X) that get more and more 'local' in X as time tends to infinity.

I'll then switch perspectives from C(X) -- the prototypical example of a commutative C*-algebra -- to noncommutative C*-algebras coming from discrete groups, and explain how the underlying large-scale geometry of the groups can give rise to approximate 'decompositions' of the C*-algebras.  I'll then explain how to use these decompositions and localization in the sense above to compute K-homology, and the connection to some conjectures in topology, geometry, and C*-algebra theory.

Mon, 31 Jan 2022
14:15
Virtual

D-critical locus structure for local toric Calabi-Yau 3-folds

Yun Shi
(Harvard University)
Abstract

Donaldson-Thomas (DT) theory is an enumerative theory which produces a virtual count of stable coherent sheaves on a Calabi-Yau 3-fold. Motivic Donaldson-Thomas theory, originally introduced by Kontsevich-Soibelman, is a categorification of the DT theory. This categorification contains more refined information of the moduli space. In this talk, I will explain the role of d-critical locus structure in the definition of motivic DT invariant, following the definition by Bussi-Joyce-Meinhardt. I will also discuss results on this structure on the Hilbert schemes of zero dimensional subschemes on local toric Calabi-Yau threefolds. This is based on joint works with Sheldon Katz. The results have substantial overlap with recent work by Ricolfi-Savvas, but techniques used here are different. 

Mon, 31 Jan 2022
12:45
L1

Topological Gravity as the Early Phase of our Universe

Prateek Agrawal
(University of Oxford)
Abstract

 I will present a scenario where the early universe is in a topological phase of gravity.  I will discuss a number of analogies which motivate considering gravity in such a phase. Cosmological puzzles such as the horizon problem provide a phenomenological connection to this phase and can be explained in terms of its topological nature. To obtain phenomenological estimates, a concrete realization of this scenario using Witten's four dimensional topological gravity will be used. In this model, the CMB power spectrum can be estimated by certain conformal anomaly coefficients. A qualitative prediction of this phase is the absence of tensor modes in cosmological fluctuations.

Sun, 30 Jan 2022

17:30 - 18:30
L1

Orchestra of the Age of Enlightenment and Tim Harford - Schooled by Randomness

Tim Harford
(Oxford University)
Further Information

Oxford Mathematics in partnership with Orchestra of the Age of Enlightenment: Bach, the Universe & Everything

Schooled by Randomness
Sunday 30 January 2022, 5:30-6.30pm
Mathematical Institute, Woodstock Road, OX2 6GG

The Science: Tim Harford
There’s been a mistake. The venue has provided the wrong piano. The black notes are sticking, the white notes are out of tune, the pedals don’t work and the instrument itself is just too small. What do you do? Tim Harford talks about how random obstacles and frustrations can inspire us to be more creative.

The Music: J.S. Bach
BWV 81 Jesus schläft, was soll ich hoffen? (Jesus sleeps, what shall I hope for?). Today’s cantata draws upon those moments in life when confusing and random obstacles in our path make us fear for the future and we need to be shown a way out.

Bach, the Universe & Everything is a collaborative music and maths event between Orchestra of the Age of Enlightenment and Oxford Mathematics. Through a series of thought-provoking Bach cantatas, readings and talks from leading Oxford thinkers, we seek to create a community similar to the one that Bach enjoyed in Leipzig until 1750.

Buy tickets here (£15)

Fri, 28 Jan 2022

16:00 - 17:00
Virtual

Applications of subfactor and categorical techniques to C*-algebras

Roberto Hernandez Palomares
(Texas A&M University)
Abstract

Q-systems were introduced by Longo to describe the canonical endomorphism of a finite Jones-index inclusion of infinite von Neumann factors. From our viewpoint, a Q-system is a unitary  version of a Frobenius algebra object in a tensor category or a C* 2-category. Following work of Douglass-Reutter, a Q-system is also a unitary version of a higher idempotent, and we will describe a higher unitary idempotent completion for C* 2-categories called Q-system completion. 


We will focus on the C* 2-category C*Alg with objects unital C*-algebras, 1-morphisms right Hilbert C*-correspondences, and 2-morphisms adjointable intertwiners. By adapting a subfactor reconstruction technique called realization, and using the graphical calculus available for C* 2-categories, we will show that C*Alg is Q-system complete.

This result allows for the straightforward adaptation of subfactor results to C*-algebras, characterizing finite Watatani-index extensions of unital C*-algebras equipped with a faithful conditional expectation in terms of the Q-systems in C*Alg. Q-system completion can also be used to induce new symmetries of C*-algebras from old. 

 

This is joint work with Quan Chen, Corey Jones and Dave Penneys (arXiv: 2105.12010).

Fri, 28 Jan 2022
16:00
N4.01

Generalized Symmetries of the Graviton

Javier Magan
(UPenn)
Further Information

It is also possible to join virtually via Teams.

Abstract

In this talk we discuss the set of generalized symmetries associated with the free graviton theory in four dimensions. These are generated by ring-like operators. As for the Maxwell field, we find a set of “electric” and a dual set of “magnetic” topological operators and compute their algebra. The associated electric and magnetic fields satisfy a set of constraints equivalent to the ones of a stress tensor of a 3d CFT. This implies that the generalized symmetry is charged under space-time symmetries, and it provides a bridge between linearized gravity and the tensor gauge theories that have been introduced recently in the context of fractonic systems in condensed matter physics.

Fri, 28 Jan 2022

16:00 - 17:00
L1

North Meets South

Kaibo Hu and Davide Spriano
Abstract

This event will be hybrid and will take place in L1 and on Teams. A link will be available 30 minutes before the session begins.

Kaibo Hu
Title: Complexes from complexes
Abstract:
Continuous and discrete (finite element) de Rham complexes have inspired key progress in the mathematical and numerical analysis of the Maxwell equations. In this talk, we derive new differential complexes from the de Rham complexes. These complexes have applications in, e.g., general relativity and continuum mechanics. Examples include the elasticity (Kröner or Calabi) complex, which encodes fundamental structures in Riemannian geometry and elasticity. This homological algebraic construction is inspired by the Bernstein-​Gelfand-Gelfand (BGG) machinery from representation theory. Analytic results, e.g., various generalisations of the Korn inequality, follow from the algebraic structures. We briefly discuss applications in numerical PDEs and other fields.

Davide Spriano

Title: Growth of groups.

Abstract:
Given a transitive graph, it is natural to consider how many vertices are contained in a ball of radius n, and to study how this quantity changes as n increases. We call such a function the growth of the graph.

In this talk, we will see some examples of growth of Cayley graph of groups, and survey some classical results. Then we will see a dichotomy in the growth behaviour of groups acting on CAT(0) cube complexes.  

Fri, 28 Jan 2022

15:00 - 16:00
L6

Topological Tools for Signal Processing

Sarah Tymochko
(Michigan State University)
Abstract

Topological data analysis (TDA) is a field with tools to quantify the shape of data in a manner that is concise and robust using concepts from algebraic topology. Persistent homology, one of the most popular tools in TDA, has proven useful in applications to time series data, detecting shape that changes over time and quantifying features like periodicity. In this talk, I will present two applications using tools from TDA to study time series data: the first using zigzag persistence, a generalization of persistent homology, to study bifurcations in dynamical systems and the second, using the shape of weighted, directed networks to distinguish periodic and chaotic behavior in time series data.

Fri, 28 Jan 2022

14:00 - 15:00
Virtual

Multiscaling the CRISPR-cas revolution from gene editing to viral detection

Prof Giulia Palermo
(Department of Bioengineering University of California Riverside)
Abstract

CRISPR is synonymous with a transformative genome editing technology that is innovating basic and applied sciences. I will report about the use of computational approaches to clarify the molecular basis and the gene-editing function of CRISPR-Cas9 and newly discovered CRISPR systems that are emerging as powerful tools for viral detection, including the SARS-CoV-2 coronavirus. We have implemented a multiscale approach, which combines classical molecular dynamics (MD) and enhanced sampling techniques, ab-initio MD, mixed Quantum Mechanics/Molecular Mechanics (QM/MM) approaches and constant pH MD (CpH MD), as well as cryo-EM fitting tools and graph theory derived analysis methods, to reveal the mechanistic basis of nucleic acid binding, catalysis, selectivity, and allostery in CRISPR systems. Using a Gaussian accelerated MD method and the Anton-2 supercluster we determined the conformational activation of CRISPR-Cas9 and the selectivity mechanism against off-target sequences. By applying network models graph theory, we have characterized a mechanism of allosteric regulation, transferring the information of DNA binding to the catalytic sites for cleavages. This mechanism is now being probed in novel Anti-CRISPR proteins, forming multi-mega Dalton complexes with the CRISPR enzymes and used for gene regulation and control. CpH MD simulations have been combined with ab-initio MD and a mixed QM/MM approach to establish the catalytic mechanism of DNA cleavage. Finally, by using multi-microsecond MD simulations we have recently probed a mechanism of DNA-induced of activation in the Cas12a enzyme, which underlies the detection of viral genetic elements, including the SARS-CoV-2 coronavirus. Overall, our outcomes contribute to the mechanistic understanding of CRISPR-based gene-editing technologies, providing information that is critical for the development of improved gene-editing tools for biomedical applications.