Networks seminar

Welcome to the homepage of the Networks seminars, a weekly seminar series on networks, complex systems, and related topics held in the Mathematical Institute. 

The Networks seminars usually take place on Tuesdays at 12:00-13:00 in C4 in the Maths Institute.
A full schedule of the upcoming talks can be found below.

To sign up to our mailing list simply send an empty email to the following address:

If you would like to give a presentation at our seminar, please do not hesitate to contact the organiser Florian Klimm. The presentation can be either about your own work or on some (recent) interesting article on networks or on complex systems in general.

We also have a webpage on the CABDyN website, but sadly this is no longer maintained.

Upcoming Seminars

30 April 2019
Florian Klimm

In this seminar, I first discuss a paper by Aslak et al. on the detection of intermittent communities with the Infomap algorithm. Second, I present own work on the detection of intermittent communities with modularity-maximisation methods. 

Many real-world networks represent dynamic systems with interactions that change over time, often in uncoordinated ways and at irregular intervals. For example, university students connect in intermittent groups that repeatedly form and dissolve based on multiple factors, including their lectures, interests, and friends. Such dynamic systems can be represented as multilayer networks where each layer represents a snapshot of the temporal network. In this representation, it is crucial that the links between layers accurately capture real dependencies between those layers. Often, however, these dependencies are unknown. Therefore, current methods connect layers based on simplistic assumptions that do not capture node-level layer dependencies. For example, connecting every node to itself in other layers with the same weight can wipe out dependencies between intermittent groups, making it difficult or even impossible to identify them. In this paper, we present a principled approach to estimating node-level layer dependencies based on the network structure within each layer. We implement our node-level coupling method in the community detection framework Infomap and demonstrate its performance compared to current methods on synthetic and real temporal networks. We show that our approach more effectively constrains information inside multilayer communities so that Infomap can better recover planted groups in multilayer benchmark networks that represent multiple modes with different groups and better identify intermittent communities in real temporal contact networks. These results suggest that node-level layer coupling can improve the modeling of information spreading in temporal networks and better capture intermittent community structure.

Aslak, Ulf, Martin Rosvall, and Sune Lehmann. "Constrained information flows in temporal networks reveal intermittent communities." Physical Review E 97.6 (2018): 062312.


21 May 2019
Takaaki Aoki

Social surveys are widely used in today's society as a method for obtaining opinions and other information from large groups of people. The questions in social surveys are usually presented in either multiple-choice or free-response formats. Despite their advantages, free-response questions are employed less commonly in large-scale surveys, because in such situations, considerable effort is needed to categorise and summarise the resulting large dataset. This is the so-called coding problem. Here we propose a survey framework in which, respondents not only write down their own opinions, but also input information characterising the similarity between their individual responses and those of other respondents. This is done in much the same way as ``likes" are input in social network services. The information input in this simple procedure constitutes relational data among opinions, which we call the opinion graph. The diversity of typical opinions can be identified as a modular structure of such a graph, and the coding problem is solved through graph clustering in a statistically principled manner. We demonstrate our approach using a poll on the 2016 US presidential election and a survey given to graduates of a particular university.

28 May 2019

Coupling dynamics of the states of the nodes of a network to the dynamics of the network topology leads to generic absorbing and fragmentation transitions. The coevolving voter model is a typical system that exhibits such transitions at some critical rewiring. We study the robustness of these transitions under two distinct ways of introducing noise. Noise affecting all the nodes destroys the absorbing-fragmentation transition, giving rise in finite-size systems to two regimes: bimodal magnetization and dynamic fragmentation. Noise targeting a fraction of nodes preserves the transitions but introduces shattered fragmentation with its characteristic fraction of isolated nodes and one or two giant components. Both the lack of absorbing state for homogeneous noise and the shift in the absorbing transition to higher rewiring for targeted noise are supported by analytical approximations.

Paper Link:

4 June 2019
Fernando Rosas

Further Information: 

Fernando Rosas received the B.A. degree in music composition and philosophy, the B.Sc. degree in mathematics, and the M.S. and Ph.D. degrees in engineering sciences from the Pontifícia Universidad Católica de Chile. He is currently a Marie Sklodowska-Curie Research Fellow in the Department of Mathematics and the Department of Electronic Engineering at Imperial College London. Previously, he worked as a Postdoctoral Researcher at the Department of Electrical Engineering of KU Leuven, and as Research Fellow at the Department of Electrical Engineering of National Taiwan University. His research interests lie in the interface between information theory, complexity science and computational neuroscience.


Complexity Science aims to understand what is that makes some systems to be "more than the sum of their parts". A natural first step to address this issue is to study networks of pairwise interactions, which have been done with great success in many disciplines -- to the extend that many people today identify Complexity Science with network analysis. In contrast, multivariate complexity provides a vast and mostly unexplored territory. As a matter of fact, the "modes of interdependency" that can exist between three or more variables are often nontrivial, poorly understood and, yet, are paramount for our understanding of complex systems in general, and emergence in particular. 
In this talk we present an information-theoretic framework to analyse high-order correlations, i.e. statistical dependencies that exist between groups of variables that cannot be reduced to pairwise interactions. Following the spirit of information theory, our approach is data-driven and model-agnostic, being applicable to discrete, continuous, and categorical data. We review the evolution of related ideas in the context of theoretical neuroscience, and discuss the most prominent extensions of information-theoretic metrics to multivariate settings. Then, we introduce the O-information, a novel metric that quantify various structural (i.e. synchronous) high-order effects. Finally, we provide a critical discussion on the framework of Integrated Information Theory (IIT), which suggests an approach to extend the analysis to dynamical settings. To illustrate the presented methods, we show how the analysis of high-order correlations can reveal critical structures in various scenarios, including cellular automata, Baroque music scores, and various EEG datasets.

[1] F. Rosas, P.A. Mediano, M. Gastpar and H.J. Jensen, ``Quantifying High-order Interdependencies via Multivariate Extensions of the Mutual Information'', submitted to PRE, under review.
[2] F. Rosas, P.A. Mediano, M. Ugarte and H.J. Jensen, ``An information-theoretic approach to self-organisation: Emergence of complex interdependencies in coupled dynamical systems'', in Entropy, vol. 20 no. 10: 793, pp.1-25, Sept. 2018.


You can also find a list of all talks (with abstracts) prior to 2018 here.


Simply send an empty email to