Wed, 20 Apr 2022

10:00 - 11:00
C1

A geometric fundamental class for Smale spaces

Mike Whittaker
(Glasgow)
Abstract

A few years back, Smale spaces were shown to exhibit noncommutative Poincaré duality (with Jerry Kaminker and Ian Putnam). The fundamental class was represented as an extension by the compacts. In current work we describe a Fredholm module representation of the fundamental class. The proof uses delicate approximations of the Smale space arising from a refining sequence of (open) Markov partition covers. I hope to explain all these notions in an elementary manner. This is joint work with Dimitris Gerontogiannis and Joachim Zacharias.

Tue, 03 May 2022

16:00 - 17:00
C1

Twisted Steinberg algebras

Ying Fen Lin
(Queen's University Belfast)
Abstract

Groupoid C*-algebras and twisted groupoid C*-algebras are introduced by Renault in the late ’70. Twisted groupoid C*-algebras have since proved extremely important in the study of structural properties for large classes of C*-algebras. On the other hand, Steinberg algebras are introduced independently by Steinberg and Clark, Farthing, Sims and Tomforde around 2010 which are a purely algebraic analogue of groupoid C*-algebras. Steinberg algebras provide useful insight into the analytic theory of groupoid C*-algebras and give rise to interesting examples of *-algebras. In this talk, I will first recall some relevant background on topological groupoids and twisted groupoid C*-algebras, then I will introduce twisted Steinberg algebras which generalise the Steinberg algebras and provide a purely algebraic analogue of twisted groupoid C*-algebras. If I have enough time, I will further introduce pair of algebras which consist of a Steinberg algebra and an algebra of locally constant functions on the unit space, it is an algebraic analogue of Cartan pairs

Mon, 20 Jun 2022
15:30
L5

Coxeter groups acting on CAT(0) cube complexes

Michah Sageev
Abstract

We will give a general overview of how one gets groups to act on CAT(0) cube complexes, how compatible such actions are and how this plays out in the setting of Coxeter groups.

 

Mon, 06 Jun 2022

15:30 - 16:30
L5

Ribbon concordance is a partial order on knots

Ian Agol
(Berkeley)
Abstract

We show that ribbon concordance forms a partial ordering on the set of knots, answering a question of Gordon. The proof makes use of representation varieties of the knot groups to S O(N) and relations between them induced by a ribbon concordance.

Mon, 30 May 2022

15:30 - 16:30
L5

Higher symmetries of gerbes

Severin Bunk
(Oxford)
Abstract

Gerbes are geometric objects describing the third integer cohomology group of a manifold and the B-field in string theory. Like line bundles, they admit connections and gauge symmetries. In contrast to line bundles, however, there are now isomorphisms between gauge symmetries: the gauge group of a gerbe is a smooth 2-group. Starting from a hands-on example, I will explain gerbes and some of their properties. The main topic of this talk will then be the study of symmetries of gerbes on a manifold with G-action, and how these symmetries assemble into smooth 2-group extensions of G. In the last part, I will survey how this construction can be used to provide a new smooth model for the String group, via a theory of ∞-categorical principal bundles and group extensions.

Mon, 23 May 2022

15:30 - 16:30
L5

Product set growth in mapping class groups

Alice Kerr
(Oxford)
Abstract

A standard question in group theory is to ask if we can categorise the subgroups of a group in terms of their growth. In this talk we will be asking this question for uniform product set growth, a property that is stronger than the more widely understood notion of uniform exponential growth. We will see how considering acylindrical actions on hyperbolic spaces can help us, and give a particular application to mapping class groups.

 

Mon, 16 May 2022

15:30 - 16:30
L5

Duality groups and Cohen-Macaulay spaces

Ric Wade
(Oxford)
Abstract

Via Poincaré duality, fundamental groups of aspherical manifolds have (appropriately shifted) isomorphisms between their homology and cohomology. In a 1973 Inventiones paper, Bieri and Eckmann defined a broader notion of a Duality Group, where the isomorphism between homology and cohomology can be twisted by what they called a Dualizing Module. Examples of these groups in geometric group theory (after passing to a finite-index subgroup) include $GL(n,\mathbb{Z})$, mapping class groups, and automorphism groups of free groups.

In work-in-progress with Thomas Wasserman we are looking into the following puzzle: the examples of duality groups that we know of that do not come from manifolds all have classifying spaces that satisfy a weaker local condition called the Cohen-Macaulay property. These spaces also satisfy weaker (twisted) versions of Poincaé duality via their local homology sheaves (or local cohomology cosheaves), and we are attempting to understand more about the links between these geometric versions of duality and the algebraic notion of a duality group. The goal of the talk is to explain more about the words used in the above paragraphs and say where we have got to so far.



 

Mon, 09 May 2022

15:30 - 16:30
L4

Automorphisms of free groups and the spaces which they act on.

Armando Martino
(Southampton)
Abstract

We will review some open questions about automorphisms of free groups, give some partial answers, and explain the deformation spaces of trees that they act on, as well as the geometry of these spaces arising from the Lipschitz metric. This will be a gentle introduction to the topic, focused on introducing the concepts.

 

Mon, 02 May 2022

15:30 - 16:30
Online

Localization and decomposition

Rufus Willett
(University of Hawaii )
Abstract

Let X be a closed Riemannian manifold, and represent the algebra C(X) of continuous functions on X on the Hilbert space L^2(X) by multiplication.  Inspired by the heat kernel proof of the Atiyah-Singer index theorem, I'll explain how to describe K-homology (i.e. the dual theory to Atiyah-Hirzebruch K-theory) in terms of parametrized families of operators on L^2(X) that get more and more 'local' in X as time tends to infinity.

I'll then switch perspectives from C(X) -- the prototypical example of a commutative C*-algebra -- to noncommutative C*-algebras built from discrete groups, and explain how the underlying large-scale geometry of the groups can give rise to approximate 'decompositions' of the C*-algebras.  I'll then explain how to use these decompositions and localization in the sense above to compute K-homology, and the connection to some conjectures in topology, geometry, and C*-algebra theory.

Subscribe to