Wed, 28 May 2025
16:00
L6

Instanton homology for $\mathfrak{gl}_2$ webs and foams

Alex Epelde Blanco
(Harvard University)
Abstract

In the definition of the skein lasagna module of a $4$-manifold $X$, it is essential that the input TQFT be fully functorial for link cobordisms in $S^3 \times [0, 1]$. I will describe an approach to resolve existing sign ambiguities in Kronheimer and Mrowka's spectral sequence from Khovanov homology to singular instanton link homology. The goal is to obtain a theory that is fully functorial for link cobordisms in $S^3 \times [0,1]$, and where the $E_2$ page carries a canonical isomorphism to Khovanov-Rozansky $\mathfrak{gl}_2$ link homology. Possible applications include non-vanishing theorems for $4$-manifold Khovanov skein lasagna modules à la Ren-Willis.

Wed, 21 May 2025
16:00
L2

Fat minors and where to find them

Joseph MacManus
(University of Oxford)
Abstract

Recently, much attention has been paid to the intersection between coarse geometry and graph theory, giving rise to the fresh, exciting new field aptly known as ‘coarse graph theory’. One aspect of this area is the study of so-called ‘fat minors’, a large-scale analogue of the usual idea of a graph minor.

In this talk, I will introduce this area and motivate some interesting questions and conjectures. I will then sketch a proof that a finitely presented group is either virtually planar or contains arbitrarily ‘fat’ copies of every finite graph.

No prior knowledge or passion for graph theory will be assumed in this talk.

Wed, 14 May 2025
16:00
L6

Coarse cohomology of metric spaces and quasimorphisms

William Thomas
(University of Oxford)
Abstract

In this talk, we give an accessible introduction to the theory of coarse cohomology of metric spaces in the sense of Margolis, which we present in direct analogy with group cohomology for discrete groups. We explain how this yields the robust notion of coarse cohomological dimension (due to Margolis), which is a genuine quasi-isometry invariant of metric spaces generalising the cohomological dimension of groups when the latter is finite. We then give applications to geometric properties of quasimorphisms and motivate how such considerations might be useful in the setting of non-positively curved groups. This is joint reading/work with Paula Heim.

Wed, 30 Apr 2025
16:00
L3

Property (T) via Sum of Squares

Gargi Biswas
(University of Oxford)
Abstract

Property (T) is a rigidity property for group representations. It is generally very difficult to determine whether an infinite group has property (T) or not. It has long been known that a discrete group with a finite symmetric generating set has property (T) if and only if the group Laplacian is a positive element in the maximal group C*-algebra. However, this characterization has not been useful in addressing the question for automorphism groups of (non-abelian) free groups. In his 2016 paper, Ozawa proved that the phenomenon of 'positivity' of the group Laplacian is observed in the real group algebra, meaning that the Laplacian can be decomposed into a 'sum of squares'. This result transformed checking property (T) into a finite-dimensional condition that can be performed with the assistance of computers. In this talk, we will introduce property (T) and discuss Ozawa's result in detail.

Topological constraints on defect dynamics
Antinucci, A Copetti, C Galati, G Rizi, G Physical Review D volume 111 issue 6 065025 (15 Mar 2025)
SymTFT for (3+1)d gapless SPTs and obstructions to confinement
Antinucci, A Copetti, C Schäfer-Nameki, S SciPost Physics volume 18 issue 3 114 (31 Mar 2025)
Predicting Treatment Outcomes from Adaptive Therapy — A New Mathematical Biomarker
Gallagher, K Strobl, M Maini, P Anderson, A
Subscribe to