The effects of a stochastic perturbation on the Bénard convection and an application of the stochastic resonance
16:00
Splittings of free groups via systems of surfaces
Abstract
There is a pleasing correspondence between splittings of a free group over finitely generated subgroups and systems of surfaces in a doubled handlebody. One can use this to describe a family of hyperbolic complexes on which Out(F_n) acts. This is joint work with Camille Horbez.
14:30
The measurable Tarski circle squaring problem
Abstract
Two subsets A and B of R^n are equidecomposable if it is possible to partition A into pieces and rearrange them via isometries to form a partition of B. Motivated by what is nowadays known as Banach-Tarski paradox, Tarski asked if the unit square and the disc of unit area in R^2 are equidecomposable. 65 years later Laczkovich showed that they are, at least when the pieces are allowed to be non-measurable sets. I will talk about a joint work with A. Mathe and O. Pikhurko which implies in particular the existence of a measurable equidecomposition of circle and square in R^2.
13:15
Large scale geometry of Coxeter groups
Abstract
Divergence, thickness, and relative hyperbolicity are three geometric properties which determine aspects of the quasi-isometric geometry of a finitely generated group. We will discuss the basic properties of these notions and some of the relations between them. We will then then survey how these properties manifest in right-angled Coxeter groups and detail various ways to classify Coxeter groups using them.
This is joint work with Hagen and Sisto.