Tim Harford's Inaugural Vicky Neale Public Lecture is now available to dip in to.
If you wish to watch the version with the tributes to Vicky please click here
Tim Harford's Inaugural Vicky Neale Public Lecture is now available to dip in to.
If you wish to watch the version with the tributes to Vicky please click here
Are you passionate about equality, diversity and inclusion? Are you keen to make real positive change within MPLS and the University?
We are now inviting expressions of interest for our next cohort of MPLS ED&I Fellows. If you (or anyone you know) are passionate about ED&I and want to make positive change within our University, this could be for you.
One of the most important questions in theoretical physics is finding a theory of quantum gravity, which could help us address fundamental questions about our world, related to what is inside a black hole, or what is the origin of the universe. Several approaches have been developed over the past decades to tackle this problem, with string theory being a leading candidate due to its potential to unify the laws of physics.
The (Local) Lifting Property ((L)LP) is introduced by Kirchberg and deals with lifting completely positive maps. We will discuss various examples, characterizations, and closure properties of the (L)LP and, if time permits, connections with some other lifting properties of C*-algebras. Joint work with Dominic Enders.
I will give a light introduction to the concept of a quantum expander, which is an analogue of an expander graph that arises in quantum information theory. Most examples of quantum expanders that appear in the quantum information literature are obtained by random matrix techniques. I will explain another, more algebraic approach to constructing quantum expanders, which is based on using actions and representations of discrete quantum groups with Kazhdan's property (T). This is joint work with Eric Culf (U Waterloo) and Matthijs Vernooij (TU Delft).
A C*-algebra is said to be residually finite-dimensional (RFD) when it has `sufficiently many' finite-dimensional representations. The RFD property is an important, and still somewhat mysterious notion, with subtle connections to residual finiteness properties of groups. In this talk I will present certain characterisations of the RFD property for C*-algebras of amenable étale groupoids and for C*-algebraic crossed products by amenable actions of discrete groups, extending (and inspired by) earlier results of Bekka, Exel, and Loring. I will also explain the role of the amenability assumption and describe several consequences of our main theorems. Finally, I will discuss some examples, notably these related to semidirect products of groups.
A C*-correspondence between two C*-algebras is a generalization of a *-homomorphism. Laca and Neshveyev showed that, like a *-homomorphism, there is an induced map between traces of the algebras. Given sufficient regularity conditions, the map defines a bounded operator between the spaces of (bounded) tracial linear functionals.
This operator can be of independent interest - a special case of correspondence gives Ruelle's operator associated to a non-invertible discrete-time dynamical system, and the study of Ruelle's operator is the basis of his thermodynamic formalism. Moreover, by the work of Laca and Neshveyev, the operator's positive eigenvectors determine the KMS states of the gauge action on the Cuntz-Pimsner algebra of the correspondence.
Given a C*-correspondence from a C*-algebra to itself, we will present a sufficient condition on the C*-correspondence that implies the operator on traces has a unique positive eigenvector, and moreover a spectral gap. This result recovers the Perron-Frobenius theorem, aspects of Ruelle's thermodynamic formalism, and unique KMS state results for a variety of constructions of Cuntz-Pimsner algebras, including the C*-algebras associated to self-similar groupoids. The talk is based on work in progress.
The stable uniqueness theorem for KK-theory asserts that a Cuntz-pair of *-homomorphisms between separable C*-algebras gives the zero element in KK if and only if the *-homomorphisms are stably homotopic through a unitary path, in a specific sense. This result, along with its group equivariant analogue, has been crucial in the classification theory of C*-algebras and C*-dynamics. In this talk, I will present a unitary tensor category analogue of the stable uniqueness theorem and explore its application to a duality in tensor category equivariant KK-theory. To make the talk approachable even for those unfamiliar with actions of unitary tensor categories or KK-theory, I will introduce the relevant definitions and concepts, drawing comparisons with the case of group actions. This is joint work with Kan Kitamura and Robert Neagu.