Mon, 15 Feb 2021

15:45 - 16:45
Virtual

The singularity category of C^*(BG)

John Greenlees
(Warwick University)
Abstract

For an ordinary commutative Noetherian ring R we would define the singularity category to be the quotient of the (derived category of) finitely generated modules modulo the (derived category of) fg projective modules [``the bounded derived category modulo compact objects’’]. For a ring spectrum like C^*(BG) (coefficients in a field of characteristic p) it is easy to define the module category and the compact objects, but finitely generated objects need a new definition. The talk will describe the definition and show that the singularity category is trivial exactly when G is p-nilpotent. We will go on to describe the singularity category for groups with cyclic Sylow p-subgroup.

Mon, 08 Feb 2021

15:45 - 16:45
Virtual

Veering triangulations and related polynomial invariants

Anna Parlak
(University of Warwick)
Abstract

Veering triangulations are a special class of ideal triangulations with a rather mysterious combinatorial definition. Their importance follows from a deep connection with pseudo-Anosov flows on 3-manifolds. Recently Landry, Minsky and Taylor introduced a polynomial invariant of veering triangulations called the taut polynomial. During the talk I will discuss how and why it is connected to the Alexander polynomial of the underlying manifold.  

Mon, 01 Feb 2021

15:45 - 16:45
Virtual

Introduction to Hierarchically Hyperbolic Groups

Davide Spriano
(University of Oxford)
Abstract

Hierarchically Hyperbolic Groups (HHGs) were introduced by Behrstock—Hagen—Sisto to provide a common framework to study several groups of interest in geometric group theory, and have been an object of great interest in the area ever since. The goal of the talk is to provide an introduction to the theory of HHGs and discuss the advantages of the unified approach that they provide. If time permits, we will conclude with applications to growth and asymptotic cones of groups.

Mon, 18 Jan 2021

15:45 - 16:45
Virtual

E∞-algebras and general linear groups

Oscar Randal-Williams
(Cambridge University)
Abstract

I will discuss joint work with S. Galatius and A. Kupers in which we investigate the homology of general linear groups over a ring $A$ by considering the collection of all their classifying spaces as a graded $E_\infty$-algebra. I will first explain diverse results that we obtained in this investigation, which can be understood without reference to $E_\infty$-algebras but which seem unrelated to each other: I will then explain how the point of view of cellular $E_\infty$-algebras unites them.

Mon, 25 Jan 2021

15:45 - 16:45
Virtual

The Friedl-Tillmann polytope

Dawid Kielak
(University of Oxford)
Abstract

I will introduce the Friedl-Tillmann polytope for one-relator groups, and then discuss how it can be generalised to the Friedl-Lück polytope, how it connects to the Thurston polytope, and how we can view it as a convenient source of intuition and ideas.

Photo of Solveig

As cancer treatment improves and survival rates increase, the long- and short-term side-effects of these treatments become more of a concern. One such side-effect is autoimmune myocarditis, or cardiac muscle inflammation, which can occur in patients undergoing treatment with immune checkpoint inhibitors (ICIs), a class of drugs used in cancer therapy. Although autoimmune myocarditis is a rare side-effect affecting only 0.1-1% of patients being treated with ICIs, it has a high fatality rate at 25-50% of cases.

Subscribe to