14:00
Mock Modular Forms
Junior strings is a seminar series where DPhil students present topics of common interest that do not necessarily overlap with their own research areas. This is primarily aimed at PhD students and post-docs but everyone is welcome.
14:00
Higher Form Symmetries: Part 2
Junior strings is a seminar series where DPhil students present topics of common interest that do not necessarily overlap with their own research areas. This is primarily aimed at PhD students and post-docs but everyone is welcome.
14:00
Higher Form Symmetries: Part 1
Junior strings is a seminar series where DPhil students present topics of comment interest that do not necessarily overlap with their own research areas. This is primarly aimed at PhD students and post-docs but everyone is welcome.
12:00
Worldsheet description of Kerr interactions
Abstract
The recent progress of applying QFT methods to classical GR has provided a new perspective on the Kerr black hole solution. Its leading gravitational interactions are known to involve an infinite tower of spin-induced multipoles with unit coupling constants. In this talk, I will present a novel form of the classical worldline action that implements these multipole interactions within a single worldsheet integral, which is inspired by the Newman-Janis shift relationship of the Kerr and Schwarzschild solutions. I will also discuss connections to our recently discovered ability to model such interactions using a certain family of scattering amplitudes, as well as a simple double-copy property hidden within.
This will be an in-person seminar run in hybrid mode.
12:00
Gravitational entropy and the flatness, homogeneity and isotropy puzzles
Abstract
I’ll review a new, simpler explanation for the large-scale properties of the
cosmos, presented with L. Boyle in our recent preprint arXiv:2201.07279. The
basic ingredients are elementary and well-known, namely Einstein’s theory of
gravity and Hawking’s method of computing gravitational entropy. The new
twist is provided by the boundary conditions we proposed for big bang-type
singularities, allowing conformal zeros but imposing CPT symmetry and
analyticity at the bang. These boundary conditions, which have significant
overlap with Penrose’s Weyl curvature hypothesis, allow gravitational
instantons for universes with Lambda, massless radiation and space
curvature, of either sign, from which we are able to infer a gravitational
entropy. We find the gravitational entropy can exceed the de Sitter entropy
and that, to the extent that it does, the most probable large-scale geometry
for the universe is flat, homogeneous and isotropic. I will briefly
summarise our earlier work showing how the gauge-fermion Lagrangian of the
standard model may be reconciled with Weyl symmetry and a small cosmological
constant, at leading order, provided there are precisely three generations
of fermions. The same mechanism generates scale-invariant primordial
perturbations. The cosmic dark matter consists of a right-handed neutrino.
In summary, we have taken significant steps towards a new, highly principled
and testable theory of cosmology.
Controllability for the (multi-dimensional) Burgers equation with localised one-dimensional control
A Zoom link to the talk will be circulated to the mailing list on Wednesday, 1 December. Please contact Benjamin Fehrman to be added.
Abstract
We will consider the viscous Burgers driven by a localised one-dimensional control. The problem is considered in a bounded domain and is supplemented with the Dirichlet boundary condition. We will prove that any solution of the equation in question can be exponentially stabilised. Combining this result with an earlier result on local exact controllability we will show global exact controllability by a localised control. This is a joint work with A. Shirikyan.
Contact problems in glaciology
Abstract
Several problems of great importance in the study of glaciers and ice sheets involve processes of attachment and reattachment of the ice from the bedrock. Consider, for example, an ice sheet sliding from the continent into the ocean, where it goes afloat. Another example is that of subglacial cavitation, a fundamental mechanism in glacial sliding where the ice detaches from the bedrock along the downstream area of an obstacle. Such problems are generally modelled as a viscous Stokes flow with a free boundary and contact boundary conditions. In this talk, I will present a framework for solving such problems numerically. I will start by introducing the mathematical formulation of these viscous contact problems and the challenges that arise when trying to approximate them numerically. I will then show how, given a stable scheme for the free boundary equation, one can build a penalty formulation for the viscous contact problem in such a way that the resulting algorithm remains stable and robust.
A homogenisation approach to mass transport models for organoid culture
Abstract
Organoids are three–dimensional multicellular tissue constructs. When cultured in vitro, they recapitulate the structure, heterogeneity, and function of their in vivo counterparts. As awareness of the multiple uses of organoids has grown, e.g. in drug discovery and personalised medicine, demand has increased for low–cost and efficient methods of producing them in a reproducible manner and at scale. We are working in collaboration with the biotechnology company Cellesce, who develop bioprocessing systems for the expansion of organoids at scale. Part of their technology includes a bioreactor, which utilises flow of culture media to enhance nutrient delivery to the organoids and facilitate the removal of waste metabolites. A key priority is ensuring uniformity in organoid size and reproducibility; qualities that depends on the bioreactor design and operating conditions. A complete understanding of the system requires knowledge of the spatial and temporal information regarding flow and the resulting oxygen and metabolite concentrations throughout the bioreactor. However, it is impractical to obtain this data empirically, due to the highly–controlled environment of the bioreactor posing difficulties for online real–time monitoring of the system. Thus, we exploit a mathematical modelling approach, to provide spatial as well as temporal information.
In the bioreactor, organoids are seeded as single cells in a layer of hydrogel. We present a general model for the nutrient and waste metabolite concentrations in the hydrogel and organoid regions of the bioreactor. Resolving for the millions of organoids within the hydrogel is computationally expensive and infeasible. Hence, we take a mathematical homogenisation approach to understand how the behaviour of the organoids on the microscale influences the macroscale behaviour in the hydrogel layer. We consider the case of growing organoids, with a temporally and spatially dependent radii, and exploit the separation of scales to systematically derive an effective macroscale model for metabolite transport. We explore some canonical problems to understand our homogenised system.