16:00
16:00
The bilevel optimization renaissance through machine learning: lessons and challenges
Abstract
Bilevel optimization has been part of machine learning for over 4 decades now, although perhaps not always in an obvious way. The interconnection between the two topics started appearing more clearly in publications since about 20 years now, and in the last 10 years, the number of machine learning applications of bilevel optimization has literally exploded. This rise of bilevel optimization in machine learning has been highly positive, as it has come with many innovations in the theoretical and numerical perspectives in understanding and solving the problem, especially with the rebirth of the implicit function approach, which seemed to have been abandoned at some point.
Overall, machine learning has set the bar very high for the whole field of bilevel optimization with regards to the development of numerical methods and the associated convergence analysis theory, as well as the introduction of efficient tools to speed up components such as derivative calculations among other things. However, it remains unclear how the techniques from the machine learning—based bilevel optimization literature can be extended to other applications of bilevel programming.
For instance, many machine learning loss functions and the special problem structures enable the fulfillment of some qualification conditions that will fail for multiple other applications of bilevel optimization. In this talk, we will provide an overview of machine learning applications of bilevel optimization while giving a flavour of corresponding solution algorithms and their limitations.
Furthermore, we will discuss possible paths for algorithms that can tackle more complicated machine learning applications of bilevel optimization, while also highlighting lessons that can be learned for more general bilevel programs.
Fast optimistic methods for monotone equations and convex optimization problems
Please note; the seminar is taking place in Lecture Room 4 on this occasion
Abstract
In this talk, we discuss continuous in time dynamics for the problem of approaching the set of zeros of a single-valued monotone and continuous operator V . Such problems are motivated by minimax convexconcave and, in particular, by convex optimization problems with linear constraints. The central role is played by a second-order dynamical system that combines a vanishing damping term with the time derivative of V along the trajectory, which can be seen as an analogous of the Hessian-driven damping in case the operator is originating from a potential. We show that these methods exhibit fast convergence rates for kV (z(t))k as t ! +1, where z( ) denotes the generated trajectory, and for the restricted gap function, and that z( ) converges to a zero of the operator V . For the corresponding implicit and explicit discrete time models with Nesterov’s momentum, we prove that they share the asymptotic features of the continuous dynamics.
Extensions to variational inequalities and fixed-point problems are also addressed. The theoretical results are illustrated by numerical experiments on bilinear games and the training of generative adversarial networks.
Oxford Mathematician Roger Heath-Brown has been been appointed Officer of the Order of the British Empire (OBE) for services to Mathematics and Mathematical Research in the 2024 New Year Honours List.
Roger Heath-Brown is one of the foremost analytic number theorists of his generation. His important works on prime numbers and related topics include, among many others:
15:00
Sharp spectral gaps for scl from negative curvature
Abstract
Stable commutator length is a measure of homological complexity of group elements, which is known to take large values in the presence of various notions of negative curvature. We will present a new geometric proof of a theorem of Heuer on sharp lower bounds for scl in right-angled Artin groups. Our proof relates letter-quasimorphisms (which are analogues of real-valued quasimorphisms with image in free groups) to negatively curved angle structures for surfaces estimating scl.
15:00
Counting geodesics of given commutator length
Abstract
Abstract: It’s a classical result by Huber that the number of closed geodesics of length bounded by L on a closed hyperbolic surface S is asymptotic to exp(L)/L as L grows. This result has been generalized in many directions, for example by counting certain subsets of closed geodesics. One such result is the asymptotic growth of those that are homologically trivial, proved independently by both by Phillips-Sarnak and Katsura-Sunada. A homologically trivial curve can be written as a product of commutators, and in this talk we will look at those that can be written as a product of g commutators (in a sense, those that bound a genus g subsurface) and obtain their asymptotic growth. As a special case, our methods give a geometric proof of Huber’s classical theorem. This is joint work with Juan Souto.
15:00
Asymptotic mapping class groups of Cantor manifolds and their finiteness properties
Abstract
We introduce a new class of groups with Thompson-like group properties. In the surface case, the asymptotic mapping class group contains mapping class groups of finite type surfaces with boundary. In dimension three, it contains automorphism groups of all finite rank free groups. I will explain how asymptotic mapping class groups act on a CAT(0) cube complex which allows us to show that they are of type F_infinity.
This is joint work with Javier Aramayona, Kai-Uwe Bux, Jonas Flechsig and Xaolei Wu.