Tue, 09 May 2017
14:00
L3

Computation of the joint spectral radius by optimization techniques

Amirali Ahmadi
(Princeton University)
Abstract


The joint spectral radius (JSR) of a set of matrices characterizes the maximum growth rate that can be achieved by multiplying them in arbitrary order. This concept, which essentially generalizes the notion of the "largest eigenvalue" from one matrix to many, was introduced by Rota and Strang in the early 60s and has since emerged in many areas of application such as stability of switched linear systems, computation of the capacity of codes, convergence of consensus algorithms, tracability of graphs, and many others. The JSR is a very difficult quantity to compute even for a pair of matrices. In this talk, we present optimization-based algorithms (e.g., via semidefinite programming or dynamic programming) that can either compute the JSR exactly in special cases or approximate it with arbitrary prescribed accuracy in the general case.

Based on joint work (in different subsets) with Raphael Jungers, Pablo Parrilo, and Mardavij Roozbehani.
 

Mon, 15 May 2017
12:45
L3

Infinitesimal moduli of heterotic G_2 systems

Xenia de la Ossa
(Oxford)
Abstract

A heterotic $G_2$ system is a quadruple $([Y,\varphi], [V, A], [TY,\theta], H)$ where $Y$ is a seven dimensional manifold with an integrable <br /> $G_2$ structure $\varphi$, $V$ is a bundle on $Y$ with an instanton connection $A$, $TY$ is the tangent bundle with an instanton connection $\theta$ and $H$ is a three form on $Y$ determined uniquely by the $G_2$ structure on $Y$. Further, H  is constrained so that it satisfies a condition that involves the Chern-Simons forms of $A$ and $\theta$, thus mixing the geometry of $Y$ with that of the bundles (this is the so called anomaly cancelation condition).  In this talk I will describe the tangent space of the moduli space of these systems. We first prove that a heterotic system is equivalent to an exterior covariant derivative $\cal D$ on the bundle ${\cal Q} = T^*Y\oplus {\rm End}(V)\oplus {\rm End}(TY)$ which satisfies $\check{\cal D}^2 = 0$ for some appropriately defined projection of the operator $\cal D$.  Remarkably, this equivalence implies the (Bianchi identity of) the anomaly cancelation condition. We show that the infinitesimal moduli space is given by the cohomology group $H^1_{\check{\cal D}}(Y, {\cal Q})$ and therefore it is finite dimensional.   Our analysis leads to results that are of relevance to all orders in $\alpha’$.  Time permitting, I will comment on work in progress about the finite deformations of heterotic $G_2$ systems and the relation to differential graded Lie algebras.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Mon, 08 May 2017
12:45
L3

Gauged Linear Sigma Model, Calabi-Yaus and Hemisphere Partition Function

Johanna Knapp
(Technical University of Vienna)
Abstract

The gauged linear sigma model (GLSM) is a supersymmetric gauge theory in two dimensions which captures information about Calabi-Yaus and their moduli spaces. Recent result in supersymmetric localization provide new tools for computing quantum corrections in string compactifications. This talk will focus on the hemisphere partition function in the GLSM which computes the quantum corrected central charge of B-type D-branes. Several concrete examples of GLSMs and the application of the hemisphere partition function in the context of transporting D-branes in the Kahler moduli space will be given.

 
Mon, 24 Apr 2017
12:45
L3

Computational Algebraic Geometry meets String Theory: the search for rigid divisors and computing sheaf cohomology on Calabi-Yau hypersurfaces of toric 4-folds.

Mike Stillman
(Cornell)
Abstract

Calabi-Yau 3-folds play a large role in string theory.  Cohomology of sheaves on such varieties has many uses in string theory, including counting the number of particles or fields in a theory, as well as to help identify terms in the superpotential that determines the equations of motion of the corresponding string theory, and many other uses as well.  As a computational algebraic geometer, string theory provides a rich source of new computational problems to solve.

In this talk, we focus on the search for rigid divisors on these Calabi-Yau hypersurfaces of toric varieties.  We have had methods to compute sheaf cohomology on these varieties for many years now (Eisenbud-Mustata-Stillman, around 2000), but these methods fail for many of the examples of interest, in that they take a very long time, or the software (wisely) refuses to try!

We provide techniques and formulas for the sheaf cohomology of certain divisors of interest in string theory, that other current methods cannot handle.  Along the way, we describe a Macaulay2 package for computing with these objects, and show its use on examples.

This is joint work with Andreas Braun, Cody Long, Liam McAllister, and Benjamin Sung.

 
 
 
Wed, 03 May 2017

14:00 - 15:00
L3

On finiteness properties of the Johnson filtrations

Mikhail Ershov
(Virginia)
Abstract

Let $A$ denote either the automorphism group of the free group of rank $n$ or the mapping class group of an orientable surface of genus $n$ with at most 1 boundary component, and let $G$ be either the subgroup of IA-automorphisms or the Torelli subgroup of $A$, respectively. I will discuss various finiteness properties of subgroups containing $G_N$, the $N$-th term of the lower central series of $G$, for sufficiently small $N$. In particular, I will explain why
(1) If $n \geq 4N-1$, then any subgroup of G containing $G_N$ (e.g. the $N$-th term of the Johnson filtration) is finitely generated
(2) If $n \geq 8N-3$, then any finite index subgroup of $A$ containing $G_N$ has finite abelianization.
The talk will be based on a joint work with Sue He and a joint work with Tom Church and Andrew Putman

Mon, 29 May 2017

14:15 - 15:15
L4

Nonabelian Hodge spaces and nonlinear representation theory

Philip Boalch
(Orsay)
Abstract

The theory of connections on curves and Hitchin systems is something like a “global theory of Lie groups”, where one works over a Riemann surface rather than just at a point. We’ll describe how one can take this analogy a few steps further by attempting to make precise the class of rich geometric objects that appear in this story (including the non-compact case), and discuss their classification, outlining a theory of “Dynkin diagrams” as a step towards classifying some examples of such objects.

Fri, 19 May 2017

16:00 - 17:00
L1

A conversation with Uta Frith and Maria Bruna

Professor Uta Frith and Dr Maria Bruna
Abstract

Professor Uta Frith FRS is a distinguished developmental psychologist who is well known for her pioneering research on autism spectrum disorders. She also has a long-standing interest in matters relating to diversity in science, and is the Chair of the Royal Society's Diversity Committee. Oxford Mathematician Dr Maria Bruna is a Junior Research Fellow in Mathematics at St John's College, and has won prizes such as the L'Oréal-UNESCO UK and Ireland For Women in Science Fellowship and the Olga Taussky Pauli Fellowship, Wolfgang Pauli Institute. This informal discussion will no doubt include a range of topics -- but it is hard to say in advance where the conversation might go!

Fri, 05 May 2017

16:00 - 17:00
L1

Managing expectations

Alan Percy
(Counselling Service University of Oxford)
Abstract

Alan is the Head of Counselling at the University of Oxford.  He will talk about the importance of managing expectations and not having rigid expectations, about challenging perfectionism, and about building emotional resilience through adaptability and compassion.

Fri, 16 Jun 2017

16:00 - 17:00
L1

North meets South Colloquium

Lisa Lamberti + Jaroslav Fowkes
(Mathematical Insitute, Oxford)
Abstract

Lisa Lamberti

No image

Geometric models in algebra and beyond

Many phenomena in mathematics and related sciences are described by geometrical models.

In this talk, we will see how triangulations in polytopes can be used to uncover combinatorial structures in algebras. We will also glimpse at possible generalizations and open questions, as well as some applications of geometric models in other disciplines.

Jaroslav Fowkes

[[{"fid":"47972","view_mode":"media_square","fields":{"format":"media_square","field_file_image_alt_text[und][0][value]":"Jaroslav Fowkes","field_file_image_title_text[und][0][value]":"Jaroslav Fowkes"},"type":"media","attributes":{"alt":"Jaroslav Fowkes","title":"Jaroslav Fowkes","height":"258","width":"258","class":"media-element file-media-square"}}]]

Optimization Challenges in the Commercial Aviation Sector

The commercial aviation sector is a low-margin business with high fixed costs, namely operating the aircraft themselves. It is therefore of great importance for an airline to maximize passenger capacity on its route network. The majority of existing full-service airlines use largely outdated capacity allocation models based on customer segmentation and fixed, pre-determined price levels. Low-cost airlines, on the other hand, mostly fly single-leg routes and have been using dynamic pricing models to control demand by setting prices in real-time. In this talk, I will review our recent research on dynamic pricing models for the Emirates route network which, unlike that of most low-cost airlines, has multiple routes traversing (and therefore competing for) the same leg.

Subscribe to