Modular Forms from the Arithmetic of Singular Calabi-Yau Manifolds
Abstract
I will give an introductory account of the zeta-functions for one-parameter families of CY manifolds. The aim of the talk is to point out that the zeta-functions corresponding to singular manifolds of the family correspond to modular forms. In order to give this introductory account I will give a lightning review of finite fields and of the p-adic numbers.
The hydrodynamic limit of the parabolic Ginzburg-Landau equation
Abstract
The Ginzburg-Landau functional serves as a model for the formation of vortices in many physical contexts. The natural gradient flow, the parabolic Ginzburg-Landau equation, converges in the limit of small vortex size and finite number of vortices to a system of ODEs. Passing to the limit of many vortices in this ODE, one can derive a mean field PDE, similar to the passage from point vortex systems to the 2D Euler equations. In the talk, I will present quantitative estimates that allow us to directly connect the parabolic GL equation to the limiting mean field PDE. In contrast to recent work by Serfaty, our work is restricted to a fairly low number of vortices, but can handle vortex sheet initial data in bounded domains. This is joint work with Daniel Spirn (University of Minnesota).
14:15
A model to resolve organochlorine pharmacokinetics in migrating Humpback whales
Abstract
Humpback whales are iconic mammals at the top of the Antarctic food chain. Their large reserves of lipid-rich tissues such as blubber predispose them to accumulation of lipophilic contaminants throughout their lifetime. Changes in the volume and distribution of lipids in humpback whales, particularly during migration, could play an important role in the pharmacokinetics of lipophilic contaminants such as the organochlorine pesticide hexachlorobenzene (HCB). Previous models have examined constant feeding and nonmigratory scenarios. In the present study, the authors develop a novel heuristic model to investigate HCB dynamics in a humpback whale and its environment by coupling an ecosystem nutrient-phytoplankton-zooplankton-detritus (NPZD) model, a dynamic energy budget (DEB) model, and a physiologically based pharmacokinetic (PBPK) model. The model takes into account the seasonal feeding pattern of whales, their energy requirements, and fluctuating contaminant burdens in the supporting plankton food chain. It is applied to a male whale from weaning to maturity, spanning 20 migration and feeding cycles. The model is initialized with environmental HCB burdens similar to those measured in the Southern Ocean and predicts blubber HCB concentrations consistent with empirical concentrations observed in a southern hemisphere population of male, migrating humpback whales.
17:30
Real Closed Fields and Models of Peano Arithmetic
Abstract
We say that a real closed field is an IPA-real closed field if it admits an integer part (IP) which is a model of Peano Arithmetic (PA). In [2] we prove that the value group of an IPA-real closed field must satisfy very restrictive conditions (i.e. must be an exponential group in the residue field, in the sense of [4]). Combined with the main result of [1] on recursively saturated real closed fields, we obtain a valuation theoretic characterization of countable IPA-real closed fields. Expanding on [3], we conclude the talk by considering recursively saturated o-minimal expansions of real closed fields and their IPs.
References:
[1] D'Aquino, P. - Kuhlmann, S. - Lange, K. : A valuation theoretic characterization ofrecursively saturated real closed fields ,
Journal of Symbolic Logic, Volume 80, Issue 01, 194-206 (2015)
[2] Carl, M. - D'Aquino, P. - Kuhlmann, S. : Value groups of real closed fields and
fragments of Peano Arithmetic, arXiv: 1205.2254, submitted
[3] D'Aquino, P. - Kuhlmann, S : Saturated o-minimal expansions of real closed fields, to appear in Algebra and Logic (2016)
[4] Kuhlmann, S. :Ordered Exponential Fields, The Fields Institute Monograph Series, vol 12. Amer. Math. Soc. (2000)
14:00
12:00