Tue, 14 May 2024
11:00
L5

A graph discretized approximation of diffusions with drift and killing on a complete Riemannian manifold

Hiroshi Kawabi
(Keio University)
Abstract

In this talk, we present a graph discretized approximation scheme for diffusions with drift and killing on a complete Riemannian manifold M. More precisely, for a given Schrödinger operator with drift on M having the form A = Δ b + V , we introduce a family of discrete time random walks in the  ow generated by the drift b with killing on a sequence of proximity graphs, which are constructed by partitions cutting M into small pieces. As a main result, we prove that the drifted Schrodinger semigroup {e—tA}t≥0 is approximated by discrete semigroups generated by the family of random walks with a suitable scale change. This result gives a  nite dimensional summation approximation of a Feynman-Kac type functional integral over M. Furthermore, when M is compact, we also obtain a quantitative error estimate of the convergence.
This talk is based on a joint work with Satoshi Ishiwata (Yamagata University), and the full paper can be found on https://doi.org/10.1007/s00208-024-02809-9.

Insights and caveats from mining local and global temporal motifs in cryptocurrency transaction networks.
Arnold, N Zhong, P Ba, C Steer, B Mondragón, R Cuadrado, F Lambiotte, R Clegg, R CoRR volume abs/2402.09272 (01 Jan 2024)
Wasserstein distributional robustness of neural networks.
Bai, X He, G Jiang, Y Oblój, J NeurIPS (2023)
Thu, 02 May 2024

17:00 - 18:00
L3

Multi topological fields, approximations and NTP2

Silvain Rideau-Kikuchi
(École Normale Supérieure )
Abstract

(Joint work with S. Montenegro)

The striking resemblance between the behaviour of pseudo-algebraically closed, pseudo real closed and pseudo p-adically fields has lead to numerous attempts at describing their properties in a unified manner. In this talk I will present another of these attempts: the class of pseudo-T-closed fields, where T is an enriched theory of fields. These fields verify a « local-global » principle with respect to models of T for the existence of points on varieties. Although it very much resembles previous such attempts, our approach is more model theoretic in flavour, both in its presentation and in the results we aim for.

The first result I would like to present is an approximation result, generalising a result of Kollar on PAC fields, respectively Johnson on henselian fields. This result can be rephrased as the fact that existential closeness in certain topological enrichments come for free from existential closeness as a field. The second result is a (model theoretic) classification result for bounded pseudo-T-closed fields, in the guise of the computation of their burden. One of the striking consequence of these two results is that a bounded perfect PAC field with n independent valuations has burden n and, in particular, is NTP2.

Analytic Besov functional calculus for several commuting operators
Batty, C Gomilko, A Kobos, D Tomilov, Y Journal of Spectral Theory volume 14 issue 2 513-556 (30 May 2024)
Tue, 21 May 2024

14:00 - 15:00
L5

Spin link homology and webs in type B

Elijah Bodish
(MIT)
Abstract

In their study of GL(N)-GL(m) Howe duality, Cautis-Kamnitzer-Morrison observed that the GL(N) Reshetikhin-Turaev link invariant can be computed in terms of quantum gl(m). This idea inspired Cautis and Lauda-Queffelec-Rose to give a construction of GL(N) link homology in terms of Khovanov-Lauda's categorified quantum gl(m). There is a Spin(2n+1)-Spin(m) Howe duality, and a quantum analogue that was first studied by Wenzl. In the first half of the talk, I will explain how to use this duality to compute the Spin(2n+1) link polynomial, and present calculations which suggest that the Spin(2n+1) link invariant is obtained from the GL(2n) link invariant by folding. In the second part of the talk, I will introduce the parallel categorified constructions and explain how to use them to define Spin(2n+1) link homology.

This is based on joint work in progress with Ben Elias and David Rose.

Joint moments of higher order derivatives of CUE characteristic polynomials I: asymptotic formulae
Keating, J Wei, F International Mathematics Research Notices volume 2024 issue 12 9607-9632 (04 Apr 2024)
Tue, 23 Apr 2024
13:00
L2

What's done cannot be undone: non-invertible symmetries

Shu-Heng Shao
(Stony Brook University)
Abstract

In massless QED, we find that the classical U(1) chiral symmetry is not completely broken by the Adler-Bell-Jackiw anomaly. Rather, it is resurrected as a generalized global symmetry labeled by the rational numbers. Intuitively, this new global symmetry in QED is a composition of the naive axial rotation and a fractional quantum Hall state. The conserved symmetry operators do not obey a group multiplication law, but a non-invertible fusion algebra. We further generalize our construction to QCD, and show that the neutral pion decay can be derived from a matching condition of the non-invertible global symmetry.

Subscribe to