Energy production is arguably one of the most important factors underlying modern civilisation. Energy allows us to inhabit inhospitable parts of the Earth in relative comfort (using heating and air conditioning), create large cities (by efficiently transporting food and pumping water), or maintain our health (providing the energy for water purification). It also connects people by allowing long-distance travel and facilitating digital communication.
Lava flows: theory, laboratory experiments and field data
Abstract
World wide, unconstrained lava flows kill people almost each year and cause extensive damage, costing millions of pounds. Defending against lava flows is possible by using topographic variations sensibly, placing buildings considerately, constructing defending walls of appropriate size and the like. Hinton, Hogg and Huppert have recently published three rather mathematical papers outlining how viscous flows down slopes interact with a variety of geometrical shapes; evaluating, in particular, the conditions under which “dry zones” form – safe places for people and belongings – and the size of a protective wall required to defend a given size building.
Following a desktop experimental demonstration, we will discuss these analyses and their consequences.
Non-commutative counting and stability
Abstract
G. Dimitrov and L. Katzarkov introduced in their paper from 2016 the counting of non-commutative curves and their (semi-)stability using T. Bridgeland's stability conditions on triangulated categories. To some degree one could think of this as the non-commutative analog of Gromov-Witten theory. However, its full meaning has not yet been fully discovered. For example there seems to be a relation to proving Markov's conjecture.
For the talk, I will go over the definitions of stability conditions, non-commutative curves and their counting. After developing some tools relying on working with exceptional collections, I will consider the derived category of representations on the acyclic triangular quiver and will talk about the explicit computation of the invariants for this example.
Higgs bundles and higher Teichmüller components
Abstract
It is well-known that the Teichmüller space of a compact surface can be identified with a connected component of the moduli space of representations of the fundamental group of the surface in PSL(2,R). Higher Teichmüller components are generalizations of this that exist for the moduli space of representations of the fundamental group into certain real simple Lie groups of higher rank. As for the usual Teichmüller space, these components consist entirely of discrete and faithful representations. Several cases have been identified over the years. First, the Hitchin components for split groups, then the maximal Toledo invariant components for Hermitian groups, and more recently certain components for SO(p,q). In this talk, I will describe a general construction of (still somewhat conjecturally) all possible Teichmüller components, and a parametrization of them using Higgs bundles.
Homogeneous Einstein metrics on Euclidean spaces are Einstein solvmanifolds
Abstract
We show that homogeneous Einstein metrics on Euclidean spaces are Einstein solvmanifolds, using that they admit periodic, integrally minimal foliations by homogeneous hypersurfaces. For the geometric flow induced by the orbit-Einstein condition, we construct a Lyapunov function based on curvature estimates which come from real GIT.
Pole