Mon, 04 Feb 2019
12:45
L5

Large-N Non-Supersymmetric 6D CFTs: Hologram or Mirage?

Fabio Abruzzi
(Oxford)
Abstract

In this talk I will present a large class of non-supersymmetric AdS7 solutions of IIA supergravity, and their (in)stabilities. I will start by reviewing supersymmetric AdS7 solutions of 10D supergravity dual to 6D (1,0) SCFTs. I will then focus on their non-supersymmetric counterpart, discussing how they are related. The connection between supersymmetric and non-supersymmetric solutions leads to a hint for the SUSY breaking mechanism, which potentially allows to evade some of the assumptions of the Ooguri-Vafa Conjecture about the AdS landscape. A big subset of these solutions shows a curious pattern of perturbative instabilities whenever many open-string modes are considered. On the other hand an infinite class remains apparently stable.

" "
The Oxford Centre for Industrial and Applied Mathematics (OCIAM) is a research centre within the Mathematical Institute of the University of Oxford. OCIAM was established in 1989 to foster collaborative research with both industry and other disciplines, aiming to promote a wider use of mathematics and mathematical models, leading to high quality research with a practical basis.
Tue, 12 Feb 2019

14:30 - 15:00
L5

Optimization Relaxations in Dynamic Pricing

Jaroslav Fowkes
(Oxford)
Abstract

The idea of adjusting prices in order to sell goods at the highest acceptable price, such as haggling in a market, is as old as money itself. We consider the problem of pricing multiple products on a network of resources, such as that faced by an airline selling tickets on its flight network. In this talk I will consider various optimization relaxations to the deterministic dynamic pricing problem on a network. This is joint work with Raphael Hauser.

Tue, 12 Feb 2019

14:00 - 14:30
L5

Direct solvers for the Lippmann-Schwinger equation

Abinand Gopal
(Oxford)
Abstract

In recent years, there has been an increased interest in exploiting rank structure of matrices arising from the discretization of partial differential equations to develop fast direct solvers. In this talk, I will outline the fundamental ideas of this topic in the context of solving the integral equation formulation of the Helmholtz equation, known as the Lippmann-Schwinger equation, and will discuss some plans for future work to develop new, higher-order solvers. This is joint work with Gunnar Martinsson.

Tue, 05 Feb 2019

14:30 - 15:00
L5

An Introduction to Persistent Homology

Vidit Nanda
(Oxford)
Abstract

This talk will feature a brief introduction to persistent homology, the vanguard technique in topological data analysis. Nothing will be required of the audience beyond a willingness to row-reduce enormous matrices (by hand if we can, by machine if we must).

Tue, 05 Feb 2019

14:00 - 14:30
L5

An introduction to classical time-parallelisation methods

Giancarlo Antonucci
(Oxford)
Abstract

For decades, researchers have been studying efficient numerical methods to solve differential equations, most of them optimised for one-core processors. However, we are about to reach the limit in the amount of processing power we can squeeze into a single processor. This explains the trend in today's computing industry to design high-performance processors looking at parallel architectures. As a result, there is a need to develop low-complexity parallel algorithms capable of running efficiently in terms of computational time and electric power.

Parallelisation across time appears to be a promising way to provide more parallelism. In this talk, we will introduce the main algorithms, following (Gander, 2015), with a particular focus on the parareal algorithm.

Wed, 06 Mar 2019
16:00
C1

A quick intro to right angled buildings

Ido Grayevsky
(Oxford University)
Abstract


Buildings are geometric objects, originally introduced by Tits to study Lie groups that act on their corresponding building. Apart from their significance for Lie groups, buidings and their automorphism groups are a rich source of examples for groups with interesting properties (for example, it is a result of Caprace that some buildings admit an automorphism group which is compactly generated, abstractly simple and locally compact). Right Angled Buildings (RABs) are a specific kind of building whose geometry can be well understood as it resembles the geometry of a tree. This allows one to generalise ideas like the Burger-Mozes universal groups to the setting of RABs.
I plan to give an introduction to RABs. As a complete formal introduction to buildings would take more than an hour, I will instead present various illustrative examples to give you an idea of what you should have in mind when you think of a (right-angled) building. I will be as formal as I can in presenting the basic features of buildings - Coxeter complexes, chambers, apartments, retractions and residues.  In the remaining time I will say as much as I can about the geometry of RABs, and explain how to use this geometry to derive a structure theorem for the automorphism group of a RAB, towards a definition of Burger-Mozes universal groups for RABs.
 

Tue, 10 Dec 2019

17:00 - 18:00
L1

Oxford Mathematics Christmas Public Lecture: Chris Budd - Why does Rudolf have a shiny nose?

Chris Budd
(University of Bath)
Further Information

For our popular Christmas lecture this year Chris Budd will give a seasonal talk with a number of light hearted applications of mathematics to the
festive season. 

Chris is currently Professor of Applied Mathematics at the University of Bath, and Professor of Geometry at Gresham College. He is a passionate populariser of mathematics and was awarded an OBE in 2015 for services to science and maths education.

Please email @email to register.

Watch live:

https://www.facebook.com/OxfordMathematics/
https://livestream.com/oxuni/Budd

The Oxford Mathematics Public Lectures are generously supported by XTX Markets.

Subscribe to