Tue, 15 Nov 2016
14:30
L5

SNIPE for memory-limited PCA with incomplete data: From failure to success

Armin Eftekhari
(University of Oxford)
Abstract


Consider the problem of identifying an unknown subspace S from data with erasures and with limited memory available. To estimate S, suppose we group the measurements into blocks and iteratively update our estimate of S with each new block.

In the first part of this talk, we will discuss why estimating S by computing the "running average" of span of these blocks fails in general. Based on the lessons learned, we then propose SNIPE for memory-limited PCA with incomplete data, useful also for streaming data applications. SNIPE provably converges (linearly) to the true subspace, in the absence of noise and given sufficient measurements, and shows excellent performance in simulations. This is joint work with Laura Balzano and Mike Wakin.
 

Thu, 13 Oct 2016
12:00
L5

Boundary regularity for strong local minimizers and Weierstrass problem

Judith Campos Cordero
(Ausburg University)
Abstract
We prove partial regularity up to the boundary for strong local minimizers in the case of non-homogeneous integrands and a full regularity result for Lipschitz extremals with gradients of vanishing mean oscillation. As a consequence, we also establish a sufficiency result for this class of extremals, in connection with Grabovsky-Mengesha theorem (2009), which states that $C^1$ extremals at which the second variation is positive, are strong local minimizers. 
Mon, 24 Oct 2016

16:00 - 17:00
L4

Chern-Gauss-Bonnet formulas for singular non-compact manifold

Reto Buzano
(Queen Mary University London)
Abstract

A generalisation of the classical Gauss-Bonnet theorem to higher-dimensional compact Riemannian manifolds was discovered by Chern and has been known for over fifty years. However, very little is known about the corresponding formula for complete or singular Riemannian manifolds. In this talk, we explain a new Chern-Gauss-Bonnet theorem for a class of manifolds with finitely many conformally flat ends and singular points. More precisely, under the assumptions of finite total Q curvature and positive scalar curvature at the ends and at the singularities, we obtain a Chern-Gauss-Bonnet type formula with error terms that can be expressed as isoperimetric deficits. This is joint work with Huy Nguyen. 

Wed, 09 Nov 2016
15:00
L5

On the Enumeration of Irreducible Polynomials over GF(q) with Prescribed Coefficients

Rob Granger
(EPFL (Ecole Polytechnique Federale de Lausanne))
Abstract

Gauss was the first to give a formula for the number of monic irreducible polynomials of degree n over a finite field. A natural problem is to determine the number of such polynomials for which certain coefficients are prescribed. While some asymptotic and existence results have been obtained, very few exact results are known. In this talk I shall present an algorithm which for any finite field GF(q) of characteristic p expresses the number of monic irreducibles of degree n for which the first l < p coefficients are prescribed, for n >= l and coprime to p, in terms of the number of GF(q^n)-rational points of certain affine varieties defined over GF(q). 
The GF(2) base field case is related to the distribution of binary Kloosterman sums, which have numerous applications in coding theory and cryptography, for example via the construction of bent functions. Using a variant of the algorithm, we present varieties (which are all curves) for l <= 7 and compute explicit formulae for l <= 5; before this work such formulae were only known for l <= 3. While this connection motivates the problem, the talk shall focus mainly on computational algebraic geometry, with the algorithm, theoretical questions and computational challenges taking centre stage.

Fri, 28 Oct 2016

10:00 - 11:00
L4

Feasibility projection for vibrational and damping constraints of turbines

Ulrich Ehehalt
(Siemens P & G)
Abstract

The challenge is to develop an automated process that transforms an initial desired design of turbine rotor and blades in to a close approximation having eigenfrequencies that avoid the operating frequency (and its first harmonic) of the turbine.

Wed, 23 Nov 2016
15:00
L5

Explicit isogenies in quadratic time in any characteristic

Luca de Feo
(Versailles-Saint-Quentin)
Abstract

Isogenies are algebraic group morphisms of elliptic curves. Let E, E' be two (ordinary) elliptic curves defined over a finite field of characteristic p, and suppose that there exists an isogeny ψ between E and E'. The explicit isogeny problem asks to compute a rational function expression for ψ. Various specializations of this problem appear naturally in point counting and elliptic curve cryptography. There exist essentially two families of algorithms to compute isogenies. Algorithms based on Weierstraß' differential equation are very fast and well suited in the point count setting, but are clumsier in general. Algorithms based on interpolation work more generally, but have exponential complexity in log(p) (the characteristic of the finite field). We propose a new interpolation-based algorithm that solves the explicit isogeny problem in polynomial time in all the involved parameters. Our approach is inspired by a previous algorithm of Couveignes', that performs interpolation on the p-torsion on the curves. We replace the p-torsion in Couveignes' algorithm with the ℓ-torsion for some small prime ℓ; however this adaptation requires some non-trivial work on isogeny graphs in order to yield a satisfying complexity. Joint work with Cyril Hugounenq, Jérôme Plût and Éric Schost.

Subscribe to