Tue, 17 Feb 2015

11:00 - 12:30
N3.12

Groups acting on R(ooted) trees

Alejandra Garrido
(Oxford)
Abstract

In particular, some nice things about branch groups, whose subgroup structure "sees" all actions on rooted trees.

Thu, 19 Feb 2015
11:00
C5

"The first-order theory of G_Q".

Philip Dittman
(Oxford)
Abstract

Motivated by an open conjecture in anabelian geometry, we investigate which arithmetic properties of the rationals are encoded in the absolute Galois group G_Q. We give a model-theoretic framework for studying absolute Galois groups and discuss in what respect orderings and valuations of the field are known to their first-order theory. Some questions regarding local-global principles and the transfer to elementary extensions of Q are raised.

Tue, 24 Feb 2015
14:30
L6

Optimal Resistor Networks

Mark Walters
(Queen Mary University)
Abstract

Suppose we have a finite graph. We can view this as a resistor network where each edge has unit resistance. We can then calculate the resistance between any two vertices and ask questions like `which graph with $n$ vertices and $m$ edges minimises the average resistance between pairs of vertices?' There is a `obvious' solution; we show that this answer is not correct.

This problem was motivated by some questions about the design of statistical experiments (and has some surprising applications in chemistry) but this talk will not assume any statistical knowledge.

This is joint work with Robert Johnson.

Wed, 18 Feb 2015

16:00 - 17:00
C2

Self-maps on compact F-spaces.

Max Pitz
(Oxford University)
Abstract
Compact F-spaces play an important role in the area of compactification theory, the prototype being w*, the Stone-Cech remainder of the integers. Two curious topological characteristics of compact F-spaces are that they don’t contain convergent sequences (apart from the constant ones), and moreover, that they often contain points that don’t lie in the boundary of any countable subset (so-called weak P-points). In this talk we investigate the space of self-maps S(X) on compact zero-dimensional F-spaces X, endowed with the compact-open topology. A natural question is whether S(X) reflects properties of the ground space X. Our main result is that for zero-dimensional compact F-spaces X, also S(X) doesn’t contain convergent sequences. If time permits, I will also comment on the existence of weak P-points in S(X). This is joint work with Richard Lupton.
Tue, 02 Jun 2015

12:00 - 13:00
L4

Renormalisation and the Euler-Maclaurin formula on cones

Sylvie Paycha (Potsdam)
Abstract

[based on joint work with Li Guo and  Bin Zhang]

 We apply to  the study of exponential sums on lattice points in
convex rational polyhedral cones, the generalised algebraic approach of
Connes and Kreimer to  perturbative quantum field theory.  For this purpose
we equip the space of    cones   with a connected coalgebra structure.
The  algebraic Birkhoff factorisation of Connes and Kreimer   adapted  and
generalised to this context then gives rise to a convolution factorisation
of exponential sums on lattice points in cones. We show that this
factorisation coincides with the classical Euler-Maclaurin formula
generalised to convex rational polyhedral cones by Berline and Vergne by
means of  an interpolating holomorphic function.
We define  renormalised conical zeta values at non-positive integers as the
Taylor coefficients at zero of the interpolating holomorphic function.  When
restricted to Chen cones, this  yields yet another way to renormalise
multiple zeta values  at non-positive integers.

 

Subscribe to