Groups acting on R(ooted) trees
Abstract
In particular, some nice things about branch groups, whose subgroup structure "sees" all actions on rooted trees.
In particular, some nice things about branch groups, whose subgroup structure "sees" all actions on rooted trees.
Motivated by an open conjecture in anabelian geometry, we investigate which arithmetic properties of the rationals are encoded in the absolute Galois group G_Q. We give a model-theoretic framework for studying absolute Galois groups and discuss in what respect orderings and valuations of the field are known to their first-order theory. Some questions regarding local-global principles and the transfer to elementary extensions of Q are raised.
Suppose we have a finite graph. We can view this as a resistor network where each edge has unit resistance. We can then calculate the resistance between any two vertices and ask questions like `which graph with $n$ vertices and $m$ edges minimises the average resistance between pairs of vertices?' There is a `obvious' solution; we show that this answer is not correct.
This problem was motivated by some questions about the design of statistical experiments (and has some surprising applications in chemistry) but this talk will not assume any statistical knowledge.
This is joint work with Robert Johnson.
Compact F-spaces play an important role in the area of compactification theory, the prototype being w*, the Stone-Cech remainder of the integers. Two curious topological characteristics of compact F-spaces are that they don’t contain convergent sequences (apart from the constant ones), and moreover, that they often contain points that don’t lie in the boundary of any countable subset (so-called weak P-points). In this talk we investigate the space of self-maps S(X) on compact zero-dimensional F-spaces X, endowed with the compact-open topology. A natural question is whether S(X) reflects properties of the ground space X. Our main result is that for zero-dimensional compact F-spaces X, also S(X) doesn’t contain convergent sequences. If time permits, I will also comment on the existence of weak P-points in S(X). This is joint work with Richard Lupton.
[based on joint work with Li Guo and Bin Zhang]
We apply to the study of exponential sums on lattice points in
convex rational polyhedral cones, the generalised algebraic approach of
Connes and Kreimer to perturbative quantum field theory. For this purpose
we equip the space of cones with a connected coalgebra structure.
The algebraic Birkhoff factorisation of Connes and Kreimer adapted and
generalised to this context then gives rise to a convolution factorisation
of exponential sums on lattice points in cones. We show that this
factorisation coincides with the classical Euler-Maclaurin formula
generalised to convex rational polyhedral cones by Berline and Vergne by
means of an interpolating holomorphic function.
We define renormalised conical zeta values at non-positive integers as the
Taylor coefficients at zero of the interpolating holomorphic function. When
restricted to Chen cones, this yields yet another way to renormalise
multiple zeta values at non-positive integers.