Thu, 19 May 2022

16:00 - 17:00

Dynamics of Market Making Algorithms in Dealer Markets: Learning and Tacit Collusion

WEI XIONG
Abstract

The possibility of `tacit collusion', in which interactions across market-making algorithms lead to an outcome similar to collusion among market makers, has increasingly received regulatory scrutiny. 
    We model the interaction of market makers in a dealer market as a stochastic differential game of intensity control with partial information and study the resulting dynamics of bid-ask spreads. Competition among dealers is modeled as a Nash equilibrium, which we characterise in terms of a system of coupled Hamilton-Jacobi-Bellman (HJB) equations, while Pareto optima correspond to collusion. 
    Using a decentralized multi-agent deep reinforcement learning algorithm to model how competing market makers learn to adjust their quotes, we show how the interaction of market-making algorithms may lead to tacit collusion with spread levels strictly above the competitive equilibrium level, without any explicit sharing of information.
 

Thu, 03 Nov 2022

12:00 - 13:00
L1

Wave scattering by fractals

Prof. David Hewett
(University College London)
Further Information

Dave Hewett is Associate Professor in Mathematics at University College London (UCL), and an OCIAM Visiting Fellow. His research interests centre on the applied, numerical and asymptotic analysis of wave scattering problems, including high frequency scattering and scattering by non-smooth (e.g. fractal) obstacles.

Abstract

The applied, numerical and asymptotic analysis of acoustic, electromagnetic and elastic scattering by smooth scatterers (e.g. a cylinder or a sphere) is a classical topic in applied mathematics. However, many real-world applications involve highly non-smooth scatterers with geometric structure on multiple length scales. Examples include acoustic scattering by trees and other vegetation in the modelling of urban noise propagation, electromagnetic scattering by snowflakes and ice crystal aggregates in climate modelling and weather prediction, and elastic scattering by cracks and other interfaces in seismic imaging and hydrocarbon exploration. In such situations it may be more appropriate to model the scatterer not by a smooth surface but by a fractal, a geometric object with self-similarity properties and detail on every length scale. Well-known examples include the Cantor set, Sierpinski triangle and the Koch snowflake. In this talk I will give an overview of our recent research into acoustic scattering by such fractal structures. So far our work has focussed on establishing well-posedness of the scattering problem and integral equation reformulations of it, and developing and analysing numerical methods for obtaining approximate solutions. However, there remain interesting open questions about the high frequency (short wavelength) asymptotic behaviour of solutions, and whether the self-similarity of the scatterer can be exploited to derive more efficient approximation techniques.

Thu, 27 Oct 2022

12:00 - 13:00
L1

Swimming in complex fluids

Prof. Saverio Spagnolie
(University of Wisconsin - Madison)
Further Information
Saverio Spagnolie is a professor of mathematics at the University of Wisconsin-Madison, with a courtesy appointment in chemical and biological engineering. His research focuses on problems in biological propulsion and soft matter, complex fluids, and numerical methods, and he is the director of the AMEP Lab (Applied Math, Engineering and Physics Lab). Prior to his post in Madison, Saverio received a Ph.D. in mathematics at the Courant Institute then held postdoctoral positions in engineering at UCSD and at Brown.
Abstract

Many microorganisms must navigate strange biological environments whose physics are unique and counter-intuitive, with wide-ranging consequences for evolutionary biology and human health. Mucus, for instance, behaves like both a fluid and an elastic solid. This can affect locomotion dramatically, which can be highly beneficial (e.g. for mammalian spermatozoa swimming through cervical fluid) or extremely problematic (e.g. the Lyme disease spirochete B. burgdorferi swimming through the extracellular matrix of human skin). Mathematical modeling and numerical simulations continue to provide new fundamental insights about the biological world in and around us and point toward new possibilities in biomedical engineering. These complex fluid phenomena can either enhance or retard a microorganism's swimming speed, and can even change the direction of swimming, depending on the body geometry and the properties of the fluid. We will discuss analytical and numerical insights into swimming through model viscoelastic (Oldroyd-B) and liquid-crystalline (Ericksen-Leslie) fluids, with a special focus on the important and in some cases dominant roles played by the presence of nearby boundaries.

Consensus Dynamics and Opinion Formation on Hypergraphs
Neuhäuser, L Lambiotte, R Schaub, M Higher-Order Systems 347-376 (27 Apr 2022)
Flow-Based Community Detection in Hypergraphs
Eriksson, A Carletti, T Lambiotte, R Rojas, A Rosvall, M Higher-Order Systems 141-161 (27 Apr 2022)
Towards fast weak adversarial training to solve high dimensional parabolic partial differential equations using XNODE-WAN
Oliva, P Wu, Y He, C Ni, H Journal of Computational Physics volume 463 111233 (Aug 2022)
Fri, 17 Jun 2022

10:00 - 11:00
L4

Silt build up at Peel Ports locks

David Porter (Carbon Limiting Technologies), Chris Breward, Daniel Alty (Peel Ports; joining remotely)
(Peel Ports)
Abstract

Peel Ports operate a number of locks that allow ships to enter and leave the port. The lock gates comprise a single caisson structure which blocks the waterway when closed and retracts into the dockside as the gate opens. Build up of silt ahead of the opening lock gate can prevent it from fully opening or requiring excessive power to move. If the lock is not able to fully open, ships are unable to enter the port, leading to significant operational impacts for the whole port. Peel ports are interested in understanding, and mitigating, this silt build up. 

Thu, 20 Oct 2022

12:00 - 13:00
L1

Revisiting Two Classic Surface Tension Problems: Rough Capillary Rise and Fluctuations of Cellular Droplets

Prof. Halim Kusumaatmaja
(Durham University)
Further Information

Prof Halim Kusumaatmaja is currently a Professor of Physics at Durham University and he also holds an EPSRC Fellowship in Engineering. Prof Kusumaatmaja graduated with a Master of Physics from the University of Leicester in 2004 and a PhD in Physics from the University of Oxford in 2008. He worked as a Postdoctoral Research Associate at the Max Planck Institute of Colloids and Interfaces (2008-2011) and at the University of Cambridge (2011-2013), before moving to Durham University and rising through the ranks from Assistant Professor (2013-2017) to Associate Professor (2017-2020) and Full Professor (2020-now). Prof Kusumaatmaja leads an interdisciplinary research group in the area of Soft Matter and Biophysics. Current research interests include wetting and interfacial phenomena, bio-inspired materials, liquid-liquid phase separation in biology, multistable elastic structures, colloidal and molecular self-assembly, and high performance computing.

Abstract

In this talk I will discuss our recent work on two problems. The first problem concerns with capillary rise between rough structures, a fundamental wetting phenomenon that is functionalised in biological organisms and prevalent in geological or man-made materials. Predicting the liquid rise height is more complex than currently considered in the literature because it is necessary to couple two wetting phenomena: capillary rise and hemiwicking. Experiments, simulations and analytic theory demonstrate how this coupling challenges our conventional understanding and intuitions of wetting and roughness. For example, the critical contact angle for hemiwicking becomes separation-dependent so that hemiwicking can vanish for even highly wetting liquids. The rise heights for perfectly wetting liquids can also be different in smooth and rough systems. The second problem concerns with droplets (or condensates) formed via a liquid-liquid phase separation process in biological cells. Despite the widespread importance of surface tension for the interactions between these droplets and other cellular components, there is currently no reliable technique for their measurement in live cells. To address this, we develop a high-throughput flicker spectroscopy technique. Applying it to a class of cellular droplets known as stress granules, we find their interface fluctuations cannot be described by surface tension alone. It is necessary to consider elastic bending deformation and a non-spherical base shape, suggesting that stress granules are viscoelastic droplets with a structured interface, rather than simple Newtonian liquids. Moreover, given the broad distributions of surface tension and bending rigidity observed, different types of stress granules can only be differentiated via large-scale surveys, which was not possible previously and our technique now enables.

 

Subscribe to