Thu, 04 Jun 2020

16:00 - 17:00

Multi-agent reinforcement learning: a mean-field perspective

Renyuan Xu
(University of Oxford)
Abstract

Multi-agent reinforcement learning (MARL) has enjoyed substantial successes in many applications including the game of Go, online Ad bidding systems, realtime resource allocation, and autonomous driving. Despite the empirical success of MARL, general theories behind MARL algorithms are less developed due to the intractability of interactions, complex information structure, and the curse of dimensionality. Instead of directly analyzing the multi-agent games, mean-field theory provides a powerful approach to approximate the games under various notions of equilibria. Moreover, the analytical feasible framework of mean-field theory leads to learning algorithms with theoretical guarantees. In this talk, we will demonstrate how mean-field theory can contribute to the simultaneous-learning-and-decision-making problems with unknown rewards and dynamics. 

To approximate Nash equilibrium, we first formulate a generalized mean-field game (MFG) and establish the existence and uniqueness of the MFG solution. Next we show the lack of stability in naive combination of the Q-learning algorithm and the three-step fixed-point approach in classical MFGs. We then propose both value-based and policy-based algorithms with smoothing and stabilizing techniques, and establish their convergence and complexity results. The numerical performance shows superior computational efficiency. This is based on joint work with Xin Guo (UC Berkeley), Anran Hu (UC Berkeley), and Junzi Zhang (Stanford).

If time allows, we will also discuss learning algorithms for multi-agent collaborative games using mean-field control. The key idea is to establish the time consistent property, i.e., the dynamic programming principle (DPP) on the lifted probability measure space. We then propose a kernel-based Q-learning algorithm. The convergence and complexity results are carried out accordingly. This is based on joint work with Haotian Gu, Xin Guo, and Xiaoli Wei (UC Berkeley).

Mon, 08 Jun 2020

16:00 - 17:00
Virtual

Kinetic transport in the Lorentz gas: classical and quantum

Jens Marklof
(Bristol University)
Abstract

In the first part of this lecture, I will discuss the proof of convergence of the Lorentz process, in the Boltzmann-Grad limit, to a random process governed by a generalised linear Boltzmann equation. This will hold for general scatterer configurations, including certain types of quasicrystals, and include the previously known cases of periodic and Poisson random scatterer configurations. The second part of the lecture will focus on quantum transport in the periodic Lorentz gas in a combined short-wavelength/Boltzmann-Grad limit, and I will report on some partial progress in this challenging problem. Based on joint work with Andreas Strombergsson (part I) and Jory Griffin (part II).

Wed, 03 Jun 2020
10:00
Virtual

An Introduction to Fusion Categories

Thibault Decoppet
(Oxford University)
Abstract

Motivation for the study of fusion categories is twofold: Fusion categories arise in wide array of mathematical subjects, and provide the necessary input for some fascinating topological constructions. We will carefully define what fusion categories are, and give representation theoretic examples. Then, we will explain how fusion categories are inherently finite combinatorial objects. We proceed to construct an example that does not come from group theory. Time permitting, we will go some way towards introducing so-called modular tensor categories.

 

Fri, 05 Jun 2020

15:00 - 16:00
Virtual

A topological approach to synchronization leads to explosive transition

Ginestra Bianconi
(QMUL)
Abstract

Synchronization is a collective phenomenon that pervades the natural systems from neurons to fireflies. In a network, synchronization of the dynamical variables associated to the nodes occurs when nodes are coupled to their neighbours as captured by the Kuramoto model. However many complex systems include also higher-order interactions among more than two nodes and sustain dynamical signals that might be related to higher-order simplices such as nodes of triangles. These dynamical topological signals include for instance fluxes which are dynamical variables associated to links.

In this talk I present a new topological approach [1] to synchronization on simplicial complexes. Here the theory of synchronization is combined with topology (specifically Hodge theory) for formulating the higher-order Kuramoto model that uses the higher-order Laplacians and provides the main synchronization route for topological signals. I will show that the dynamics defined on links can be projected to a dynamics defined on nodes and triangles that undergo a synchronization transition and I will discuss how this procedure can be immediately generalized for topological signals of higher dimension. Interestingly I will show that when the model includes an adaptive coupling of the two projected dynamics, the transition becomes explosive, i.e. synchronization emerges abruptly.

This model can be applied to study synchronization of topological signals in the brain and in biological transport networks as it proposes a new set of topological transformations that can reveal collective synchronization phenomena that could go unnoticed otherwise.

[1] Millán, A.P., Torres, J.J. and Bianconi, G., 2019. Explosive higher-order Kuramoto dynamics on simplicial complexes. Physical Review Letters (in press) arXiv preprint arXiv:1912.04405.

Adapted Topologies and Higher Rank Signatures
Bonnier, P Liu, C Oberhauser, H Annals of Applied Probability (2023)
Fri, 05 Jun 2020

10:00 - 11:00
Virtual

Mining learning analytics to optimise student learning journeys on the intelligent tutor, Maths-Whizz

Junaid Mubeen
(Whizz Education)
Further Information

A discussion session will follow the workshop and those interested are invited to stay in the meeting for the discussions.

Abstract

Maths-Whizz is an online, virtual maths tutor for 5-13 year-olds that is designed to behave like a human tutor. Using adaptive assessment and decision-tree algorithms, the virtual tutor guides each student along a personalised learning journey tailored to their needs. As students interact with the tutor, the system captures a range of learning analytics as an automatic by-product. These analytics, collected on a per-lesson and per-question basis, then inform a range of research projects centred on students' learning patterns. This workshop will introduce the mechanics of the Maths-Whizz tutor, as well as its related learning analytics. We will summarise the research behind four InfoMM mini-projects and present open questions we are currently grappling with. Maths-Whizz has supported over a million children and thousands of schools worldwide, from the UK and US to rural Kenya, the DRC and Mexico. In a world of social distancing and widespread school closures, the need for virtual tutoring has never been more paramount to children's learning - and nor has your data analytical expertise!

Thu, 21 May 2020

16:00 - 16:45
Virtual

Kirchberg’s QWEP Conjecture: Between Connes’ and Tsirelson’s Problems

Kirstin Courtney
(University of Münster)
Further Information

Part of UK virtual operator algebra seminar: https://sites.google.com/view/uk-operator-algebras-seminar/home

Abstract

In January of this year, a solution to Connes' Embedding Problem was announced on arXiv. The paper itself deals firmly in the realm of information theory and relies on a vast network of implications built by many hands over many years to get from an efficient reduction of the so-called Halting problem back to the existence of finite von Neumann algebras that lack nice finite-dimensional approximations. The seminal link in this chain was forged by astonishing results of Kirchberg which showed that Connes' Embedding Problem is equivalent to what is now known as Kirchberg's QWEP Conjecture. In this talk, I aim to introduce Kirchberg's conjecture and to touch on some of the many deep insights in the theory surrounding it.

Subscribe to