Dimensionality reduction techniques for global optimization
Abstract
We consider the problem of global minimization with bound constraints. The problem is known to be intractable for large dimensions due to the exponential increase in the computational time for a linear increase in the dimension (also known as the “curse of dimensionality”). In this talk, we demonstrate that such challenges can be overcome for functions with low effective dimensionality — functions which are constant along certain linear subspaces. Such functions can often be found in applications, for example, in hyper-parameter optimization for neural networks, heuristic algorithms for combinatorial optimization problems and complex engineering simulations.
Extending the idea of random subspace embeddings in Wang et al. (2013), we introduce a new framework (called REGO) compatible with any global min- imization algorithm. Within REGO, a new low-dimensional problem is for- mulated with bound constraints in the reduced space. We provide probabilistic bounds for the success of REGO; these results indicate that the success is depen- dent upon the dimension of the embedded subspace and the intrinsic dimension of the function, but independent of the ambient dimension. Numerical results show that high success rates can be achieved with only one embedding and that rates are independent of the ambient dimension of the problem.
12:00
Applying Distributional Compositional Categorical Models of Meaning to Language Translation
Abstract
In 2010 Coecke, Sadrzadeh, and Clark formulated a new model of natural language which operates by combining the syntactics of grammar and the semantics of individual words to produce a unified ''meaning'' of sentences. This they did by using category theory to understand the component parts of language and to amalgamate the components together to form what they called a ''distributional compositional categorical model of meaning''. In this talk I shall introduce the model of Coecke et. al., and use it to compare the meaning of sentences in Irish and in English (and thus ascertain when a sentence is the translation of another sentence) using a cosine similarity score.
The Irish language is a member of the Gaelic family of languages, originating in Ireland and is the official language of the Republic of Ireland.
On a mean-field optimal control problem.
Abstract
In this talk we consider a mean field optimal control problem with an aggregation-diffusion constraint, where agents interact through a potential, in the presence of a Gaussian noise term. Our analysis focuses on a PDE system coupling a Hamilton-Jacobi and a Fokker-Planck equation, describing the optimal control aspect of the problem and the evolution of the population of agents, respectively. We will discuss the existence and regularity of solutions for the aforementioned system. We notice this model is in close connection with the theory of mean-field games systems. However, a distinctive feature concerns the nonlocal character of the interaction; it affects the drift term in the Fokker-Planck equation as well as the Hamiltonian of the system, leading to new difficulties to be addressed.
The Topology of Brain cells
Abstract
In my talk I will discuss the use of topological methods in the analysis of neural data. I will show how to obtain good state spaces for Head Direction Cells and Grid Cells. Topological decoding shows how neural firing patterns determine behaviour. This is a local to global situation which gives rise to some reflections.
Simplicial Mixture Models - Fitting topology to data
Abstract
Lines and planes can be fitted to data by minimising the sum of squared distances from the data to the geometric object. But what about fitting objects from topology such as simplicial complexes? I will present a method of fitting topological objects to data using a maximum likelihood approach, generalising the sum of squared distances. A simplicial mixture model (SMM) is specified by a set of vertex positions and a weighted set of simplices between them. The fitting process uses the expectation-maximisation (EM) algorithm to iteratively improve the parameters.
Remarkably, if we allow degenerate simplices then any distribution in Euclidean space can be approximated arbitrarily closely using a SMM with only a small number of vertices. This theorem is proved using a form of kernel density estimation on the n-simplex.
Large charge and supersymmetry
Abstract
We'll discuss the large charge expansion in CFTs with supersymmetry, focussing on 1908.10306 by Grassi, Komargodski and Tizzano.