Thu, 06 May 2021

14:00 - 15:00
Virtual

Constructor Theory

Maria Violaris
(Mathematical Institute (University of Oxford))
Further Information

Contact organisers (Carmen Jorge-Diaz, Sujay Nair or Connor Behan) to obtain the link. 

Fri, 04 Jun 2021
11:30
Virtual

Interpretable fields in certain expansions of valued fields

Kobi Peterzil
(University of Haifa)
Abstract

(Joint with Y. Halevi and A. Hasson.) We consider two kinds of expansions of a valued field $K$:

(1) A $T$-convex expansion of real closed field, for $T$ a polynomially bounded o-minimal expansion of $K$.

(2) A $P$-minimal field $K$ in which definable functions are PW differentiable.

We prove that any interpretable infinite field $F$ in $K$ is definably isomorphic to a finite extension of either $K$ or, in case (1), its residue field $k$. The method we use bypasses general elimination of imaginaries and is based on analysis of one dimensional quotients of the form $I=K/E$ inside $F$ and their connection to one of 4 possible sorts: $K$, $k$ (in case (1)), the value group, or the quotient of $K$ by its valuation ring. The last two cases turn out to be impossible and in the first two cases we use local differentiability to embed $F$ into the matrix ring over $K$ (or $k$).

Thu, 20 May 2021
11:30
Virtual

Chromatic numbers of Stable Graphs

Yatir Halevi
(Ben Gurion University of the Negev)
Abstract
This is joint work with Itay Kaplan and Saharon Shelah.
Given a graph $(G,E)$, its chromatic number is the smallest cardinal $\kappa$ of a legal coloring of the vertices. We will mainly concentrate on the following strong form of Taylor's conjecture:
If $G$ is an infinite graph with chromatic number$\geq \aleph_1$ then it contains all finite subgraphs of $Sh_n(\omega)$ for some $n$, where $Sh_n(\omega)$ is the $n$-shift graph (which we will introduce).

 
The conjecture was disproved by Hajnal-Komjath. However, we will sketch a proof for a variant of this conjecture for $\omega$-stable\superstable\stable graphs. The proof uses a generalization of  Ehrenfeucht-Mostowski models, which we will (hopefully) introduce.
Thu, 13 May 2021
16:30
Virtual

Applications of generalized indiscernible sequences

Lynn Scow
(California State University San Bernardino)
Abstract

We survey some of the applications of generalized indiscernible sequences, both in model theory and in structural Ramsey theory.  Given structures $A$ and $B$, a semi-retraction is a pair of  quantifier-free type respecting maps $f: A \rightarrow B$ and $g: B \rightarrow A$ such that $g \circ f: A \rightarrow A$ is quantifier-free type preserving, i.e. an embedding.  In the case that $A$ and $B$ are locally finite ordered structures, if $A$ is a semi-retraction of $B$ and the age of $B$ has the Ramsey property, then the age of $A$ has the Ramsey property.

Tue, 04 May 2021

12:45 - 13:30

Computing the Index of Saddle Points without Second Derivatives

Ambrose Yim
(Mathematical Institute (University of Oxford))
Abstract

The index of a saddle point of a smooth function is the number of descending directions of the saddle. While the index can usually be retrieved by counting the number of negative eigenvalues of the Hessian at the critical point, we may not have the luxury of having second derivatives in data deriving from practical applications. To address this problem, we develop a computational pipeline for estimating the index of a non-degenerate saddle point without explicitly computing the Hessian. In our framework, we only require a sufficiently dense sample of level sets of the function near the saddle point. Using techniques in Morse theory and Topological Data Analysis, we show how the shape of saddle points can help us infer the index of the saddle. Furthermore, we derive an explicit upper bound on the density of point samples necessary for inferring the index depending on the curvature of level sets. 

Fri, 07 May 2021
16:00
Virtual

The Cardy-like limit of the N=1 superconformal index

Marco Fazzi
(Milan Bicocca U.)
Abstract

I will give a pedagogical introduction to the Cardy-like limit of the superconformal index of N=4 SYM and generic N=1 SCFTs, highlighting its role in the holographic dual black hole microstate counting problem.

Mon, 14 Jun 2021

16:00 - 17:00
Virtual

On the dynamics and rigidity of 3D incompressible MHD equations

Pin Yu
(Tsinghua University)
Abstract

The Alfven waves are fundamental wave phenomena in magnetized plasmas and the dynamics of Alfven waves are governed by the MHD system. In the talk,  we construct and study the long time behavior of (viscous and non-viscous) Alfven waves.

As applications, (1) We provide a rigorous justification for the following dynamical phenomenon observed in many contexts: the solution at the beginning behave like non-dispersive waves and the shape of the solution persists for a very long time (proportional to the Reynolds number); thereafter, the solution will be damped due to the long-time accumulation of the diffusive effects;

(2) We prove the rigidity aspects of the scattering problem for the MHD equations: We prove that the Alfven waves must vanish if their scattering fields vanish at infinities.

Mon, 07 Jun 2021

16:00 - 17:00
Virtual

Willmore Flow of Tori of Revolution

Anna Dall'Acqua
(Ulm University)
Abstract

There is a striking relationship between Willmore surfaces of revolution and elastic curves in hyperbolic half-space. Here the term elastic curve refer to a critical point of the energy given by the integral of the curvature squared. In the talk we will discuss this relationship and use it to study long-time existence and asymptotic behavior for the L2-gradient flow of the Willmore energy, under the condition that the initial datum is a torus of revolution. As in the case of Willmore flow of spheres, we show that if an initial datum has Willmore energy below 8 \pi then the solution of the Willmore flow converges to the Clifford Torus, possibly rescaled and translated. The energy threshold of 8 \pi turns out to be optimal for such a convergence result. 

The lecture is based on joint work with M. Müller (Univ. Freiburg), R. Schätzle (Univ. Tübingen) and A. Spener (Univ. Ulm).

Subscribe to