Oxford Mathematician Nils Matthes talks about trying to understand old numbers using new techniques.

"The Riemann zeta function is arguably one of the most important objects in arithmetic. It encodes deep information about the whole numbers; for example the celebrated Riemann hypothesis, which gives a precise location of its zeros, predicts deep information about the prime numbers. In my research, I am mostly interested in the special values of the Riemann zeta function at integers k2,

Mon, 25 Nov 2019

16:00 - 17:00
L1

Regularity of minimisers for a model of charged droplets

Jonas Hirsh
(Universität Leipzig)
Further Information

Note the change of room

Abstract

We investigate properties of minimisers of a variational model describing the shape of charged liquid droplets. Roughly speaking, the shape of a charged liquid droplet is determined by the competition between an ”aggerating” term, due to surface tension forces, and to a ”disaggergating” term due to the repulsive effect between charged particles.

In my talk I want to present our ”first” analysis of the so called Deby-Hückel-type free energy. In particular we show that minimisers satisfy a partial regularity result, a first step of understanding the further properties of a minimiser. The presented results are joint work with Guido De Philippis and Giulia Vescovo.

 

Mon, 18 Nov 2019

16:00 - 17:00
L4

Minimal surfaces, mean curvature flow and the Gibbons-Hawking ansatz

Jason Lotay
(Oxford)
Abstract

The Gibbons-Hawking ansatz is a powerful method for constructing a large family of hyperkaehler 4-manifolds (which are thus Ricci-flat), which appears in a variety of contexts in mathematics and theoretical physics. I will describe work in progress to understand the theory of minimal surfaces and mean curvature flow in these 4-manifolds. In particular, I will explain a proof of a version of the Thomas-Yau Conjecture in Lagrangian mean curvature flow in this setting. This is joint work with G. Oliveira.

Mon, 11 Nov 2019

16:00 - 17:00
L4

On some computable quasiconvex multiwell functions

Kewei Zhang
(University of Nottingham)
Abstract

The translation method for constructing quasiconvex lower bound of a given function in the calculus of variations and the notion of compensated convex transforms for tightly approximate functions in Euclidean spaces will be briefly reviewed. By applying the upper compensated convex transform to the finite maximum function we will construct computable quasiconvex functions with finitely many point wells contained in a subspace with rank-one matrices. The complexity for evaluating the constructed quasiconvex functions is O(k log k) with k the number of wells involved. If time allows, some new applications of compensated convexity will be briefly discussed.

Mon, 21 Oct 2019

16:00 - 17:00
L4

Quantitative geometric inequalities

Fabio Cavalletti
(SISSA)
Abstract

Localization technique permits to reduce full dimensional problems to possibly easier lower dimensional ones. During the last years a new approach to localization has been obtained using the powerful tools of optimal transport. Following this approach, we obtain quantitative versions of two relevant geometric inequalities  in comparison geometry as Levy-Gromov isoperimetric inequality (joint with F. Maggi and A. Mondino) and the spectral gap inequality (joint with A. Mondino and D. Semola). Both results are also valid in the more general setting of metric measure spaces verifying the so-called curvature dimension condition.

Thu, 17 Oct 2019

16:00 - 17:30
C5

A biased view of two-row Springer theory

Filip Zivanovic
Abstract

Springer theory is an important branch of geometric representation theory. It is a beautiful interplay between combinatorics, geometry and representation theory.
It started with Springer correspondence, which yields geometric construction of irreducible representations of symmetric groups, and Ginzburg's construction of universal enveloping algebra U(sl_n).

Here I will present a view of two-row Springer theory of type A (thus looking at nilpotent elements with two Jordan blocks) from a scope of a symplectic topologist (hence the title), that yields connections between symplectic-topological invariants and link invariants (Floer homology and Khovanov homology) and connections to representation theory (Fukaya category and parabolic category O), thus summarising results by Abouzaid,
Seidel, Smith and Mak on the subject.

Neutrino Astronomy in the IceCube Era
Stanev, T 004 (08 Nov 2017)
Fundamental physics at the intensity frontier. Report of the workshop held December 2011 in Rockville, MD.
Hewett, J Weerts, H Brock, R Butler, J Casey, B Lu, Z Wagner, C Dietrich, M Djurcic, Z Goodman, M Green, J Holt, R Mueller, P Paley, J Reimer, P Singh, J Upadhye, A
Subscribe to