Thu, 01 Mar 2018
16:00
C5

TBA

Emily Maw
(UCL London)
Mon, 05 Mar 2018

14:15 - 15:15
L4

Stratified hyperkähler spaces

Maxence Mayrand
(Oxford)
Abstract

Symplectic reduction is the natural quotient construction for symplectic manifolds. Given a free and proper action of a Lie group G on a symplectic manifold M, this process produces a new symplectic manifold of dimension dim(M) - 2 dim(G). For non-free actions, however, the result is usually fairly singular. But Sjamaar-Lerman (1991) showed that the singularities can be understood quite precisely: symplectic reductions by non-free actions are partitioned into smooth symplectic manifolds, and these manifolds fit nicely together in the sense that they form a stratification.

Symplectic reduction has an analogue in hyperkähler geometry, which has been a very important tool for constructing new examples of these special manifolds. In this talk, I will explain how Sjamaar-Lerman’s results can be extended to this setting, namely, hyperkähler quotients by non-free actions are stratified
spaces whose strata are hyperkähler.

 

Thu, 15 Nov 2018

17:15 - 18:15
L1

Michael Berry - Chasing the dragon: tidal bores in the UK and elsewhere

Michael Berry
(University of Bristol)
Abstract

Oxford Mathematics Public Lectures
Hooke Lecture

Michael Berry - Chasing the dragon: tidal bores in the UK and elsewhere
15 November 2018 - 5.15pm

In some of the world’s rivers, an incoming high tide can arrive as a smooth jump decorated by undulations, or as a breaking wave. The river reverses direction and flows upstream.

Understanding tidal bores involves

· analogies with tsunamis, rainbows, horizons in relativity, and ideas from  quantum physics;

· the concept of a ‘minimal model’ in mathematical explanation;

· different ways in which different cultures describe the same thing;

· the first unification in fundamental physics.

Michael Berry is Emeritus Professor of Physics, H H Wills Physics Laboratory, University of Bristol

5.15pm, Mathematical Institute, Oxford

Please email @email to register.

Watch live:

https://www.facebook.com/OxfordMathematics
https://livestream.com/oxuni/Berry

Oxford Mathematics Public Lectures are generously supported by XTX Markets.

 

 

 

In the first Oxford Mathematics London Public Lecture, in partnership with the Science Museum, world-renowned mathematician Andrew Wiles lectured on his current work around Elliptic Curves followed by an-depth conversation with mathematician and broadcaster Hannah Fry.

In a fascinating interview Andrew talked about his own motivations, his belief in the importance of struggle and resilience and his recipe for the better teaching of his subject, a subject he clearly loves deeply.

 

 

 

Measurement of the multi-TeV neutrino cross section with IceCube using
Earth absorption
Collaboration, I Aartsen, M Ackermann, M Adams, J Aguilar, J Ahlers, M Ahrens, M Samarai, I Altmann, D Andeen, K Anderson, T Ansseau, I Anton, G Argüelles, C Auffenberg, J Axani, S Bagherpour, H Bai, X Barron, J Barwick, S Baum, V Bay, R Beatty, J Tjus, J Becker, K BenZvi, S Berley, D Bernardini, E Besson, D Binder, G Bindig, D Blaufuss, E Blot, S Bohm, C Börner, M Bos, F Bose, D Böser, S Botner, O Bourbeau, J Bradascio, F Braun, J Brayeur, L Brenzke, M Bretz, H Bron, S Brostean-Kaiser, J Burgman, A Carver, T Casey, J Casier, M Cheung, E Chirkin, D Christov, A Clark, K Classen, L Coenders, S Collin, G Conrad, J Cowen, D Cross, R Day, M André, J Clercq, C DeLaunay, J Dembinski, H Ridder, S Desiati, P Vries, K Wasseige, G With, M DeYoung, T Díaz-Vélez, J Lorenzo, V Dujmovic, H Dumm, J Dunkman, M Eberhardt, B Ehrhardt, T Eichmann, B Eller, P Evenson, P Fahey, S Fazely, A Felde, J Filimonov, K Finley, C Flis, S Franckowiak, A Friedman, E Fuchs, T Gaisser, T Gallagher, J Gerhardt, L Ghorbani, K Giang, W Glauch, T Glüsenkamp, T Goldschmidt, A Gonzalez, J Grant, D Griffith, Z Haack, C Hallgren, A Halzen, F Hanson, K Hebecker, D Heereman, D Helbing, K Hellauer, R Hickford, S Hignight, J Hill, G Hoffman, K Hoffmann, R Hokanson-Fasig, B Hoshina, K Huang, F Huber, M Hultqvist, K Hünnefeld, M In, S Ishihara, A Jacobi, E Japaridze, G Jeong, M Jero, K Jones, B Kalaczynski, P Kang, W Kappes, A Karg, T Karle, A Katz, U Kauer, M Keivani, A Kelley, J Kheirandish, A Kim, J Kim, M Kintscher, T Kiryluk, J Kittler, T Klein, S Kohnen, G Koirala, R Kolanoski, H Köpke, L Kopper, C Kopper, S Koschinsky, J Koskinen, D Kowalski, M Krings, K Kroll, M Krückl, G Kunnen, J Kunwar, S Kurahashi, N Kuwabara, T Kyriacou, A Labare, M Lanfranchi, J Larson, M Lauber, F Lennarz, D Lesiak-Bzdak, M Leuermann, M Liu, Q Lu, L Lünemann, J Luszczak, W Madsen, J Maggi, G Mahn, K Mancina, S Maruyama, R Mase, K Maunu, R McNally, F Meagher, K Medici, M Meier, M Menne, T Merino, G Meures, T Miarecki, S Micallef, J Momenté, G Montaruli, T Moore, R Moulai, M Nahnhauer, R Nakarmi, P Naumann, U Neer, G Niederhausen, H Nowicki, S Nygren, D Pollmann, A Olivas, A O'Murchadha, A Palczewski, T Pandya, H Pankova, D Peiffer, P Pepper, J Heros, C Pieloth, D Pinat, E Plum, M Price, P Przybylski, G Raab, C Rädel, L Rameez, M Rawlins, K Rea, I Reimann, R Relethford, B Relich, M Resconi, E Rhode, W Richman, M Robertson, S Rongen, M Rott, C Ruhe, T Ryckbosch, D Rysewyk, D Sälzer, T Herrera, S Sandrock, A Sandroos, J Sarkar, S Satalecka, K Schlunder, P Schmidt, T Schneider, A Schoenen, S Schöneberg, S Schumacher, L Seckel, D Seunarine, S Soedingrekso, J Soldin, D Song, M Spiczak, G Spiering, C Stachurska, J Stamatikos, M Stanev, T Stasik, A Stettner, J Steuer, A Stezelberger, T Stokstad, R Stößl, A Strotjohann, N Sullivan, G Sutherland, M Taboada, I Tatar, J Tenholt, F Ter-Antonyan, S Terliuk, A Tešić, G Tilav, S Toale, P Tobin, M Toscano, S Tosi, D Tselengidou, M Tung, C Turcati, A Turley, C Ty, B Unger, E Usner, M Vandenbroucke, J Driessche, W Eijndhoven, N Vanheule, S Santen, J Vehring, M Vogel, E Vraeghe, M Walck, C Wallace, A Wallraff, M Wandler, F Wandkowsky, N Waza, A Weaver, C Weiss, M Wendt, C Werthebach, J Westerhoff, S Whelan, B Wiebe, K Wiebusch, C Wille, L Williams, D Wills, L Wolf, M Wood, J Wood, T Woolsey, E Woschnagg, K Xu, D Xu, X Xu, Y Yanez, J Yodh, G Yoshida, S Yuan, T Zoll, M Nature volume 551 596-600 (22 Nov 2017) http://arxiv.org/abs/1711.08119v1
Thu, 18 Jan 2018
16:00
L6

Mazur's Eisenstein ideal

Carl Wang-Erickson
(Imperial College, London)
Abstract

In his landmark 1976 paper "Modular curves and the Eisenstein ideal", Mazur studied congruences modulo p between cusp forms and an Eisenstein series of weight 2 and prime level N. He proved a great deal about these congruences, and also posed some questions: how many cusp forms of a given level are congruent to the Eisenstein series? How big is the extension generated by their coefficients? In joint work with Preston Wake, we give an answer to these questions in terms of cup products (and Massey products) in Galois cohomology. Time permitting, we may be able to indicate some partial generalisations of Mazur's results to square-free level.

Subscribe to