Mon, 17 Oct 2016

14:15 - 15:15
L3

Limiting behaviour of a signature

HORATIO BOEDIHARDJO
(Reading University)
Abstract

Signature of a path provides a top down summary of the path as a driving signal. There have been substantial recent progress in reconstructing paths from its signature, (Lyons-Xu 2016, Geng 2016). In this talk, we focus on obtaining certain quantitative features of paths from their signatures. Hambly-Lyons' showed that the normalized limit of signature gives the length of a C^3 path. The result was recently extended by Lyons-Xu to C^1 paths. The extension of this result to bounded variation paths remains open. We will discuss this open problem.

 

Tue, 29 Nov 2016

15:45 - 16:45
L4

On short time existence of Lagrangian mean curvature flow

Kim Moore
(Cambridge)
Abstract

One of the simplest, and yet largely still open, questions that one can ask about special Lagrangian submanifolds is whether they exist in a given homology class. One possible approach to this problem is to evolve a given Lagrangian submanifold under mean curvature flow in the hope of reaching a special Lagrangian submanifold in the same homology class. It is known, however, that even for 'nice' initial conditions the flow will develop singularities in finite time. 

I will talk about a joint work with Tom Begley, in which we prove a short time existence result for Lagrangian mean curvature flow, where the initial condition is a Lagrangian submanifold of complex Euclidean space with a certain type of singularity. This is a first step to proving, as conjectured by Joyce, that one may 'continue' Lagrangian mean curvature flow after the occurrence of singularities.

Tue, 25 Oct 2016

12:00 - 13:15
L4

On The Four-Loop Form Factors Of Massless QCD

Robert Schabinger
(Trinity College Dublin)
Abstract

In this talk, we discuss an ongoing calculation of the
four-loop form factors in massless QCD. We begin by discussing our
novel approach to the calculation in detail. Of particular interest
are a new polynomial-time integration by parts reduction algorithm and
a new method to algebraically resolve the IR and UV singularities of
dimensionally-regulated bare perturbative scattering amplitudes.
Although not all integral topologies are linearly reducible for the
more non-trivial color structures, it is nevertheless feasible to
obtain accurate numerical results for the finite parts of the complete
four-loop form factors using publicly available sector decomposition
programs and bases of finite integrals. Finally, we present first
results for the four-loop gluon form factor Feynman diagrams which
contain three closed fermion loops.

Tue, 18 Oct 2016

12:00 - 13:15
L4

Critical exponents in the $\phi^4$ model

Mikhail Kompaniets
(St Petersburg State University)
Abstract

The $\phi^4$ model in statistical physics describes the
continous phase transition in the liquid-vapour system, transition to
the superfluid phase in helium, etc. Experimentally measured values in
this model are critical exponents and universal amplitude ratios.
These values can also be calculated in the framework of the
renormalization group approach. It turns out that the obtained series
are divergent asymptotic series, but it is possible to perform Borel
resummation of such a series. To make this procedure more accurate we
need as much terms of the expansion as possible.
The results of the recent six loop analitical calculations of the
anomalous dimensions, beta function and critical exponents of the
$O(N)$ symmetric $\phi^4$ model will be presented. Different technical
aspects of these calculations (IBP method, R* operation and parametric
integration in Feynman representation) will be discussed. The

numerical estimations of critical exponents obtained with Borel
resummation procedure are compared with experimental values and
results of Monte-Carlo simulations.

Tue, 11 Oct 2016

12:00 - 13:15
L4

tt*-geometry and Hermitian structures on the big phase space

Ian Strachan
(Glasgow)
Abstract

The big phase space is an infinite dimensional manifold which is the arena
for topological quantum field theories and quantum cohomology (or
equivalently, dispersive integrable systems). tt*-geometry was introduced by
Cecotti and Vafa and is a way to introduce an Hermitian structure on what
would be naturally complex objects, and the theory has many links with
singularity theory, variation of Hodge structures, Higgs bundles, integrable
systems etc.. In this talk the two ideas will be combined to give a
tt*-geometry on the big phase space.

(joint work with Liana David)

Tue, 15 Nov 2016
14:30
L5

SNIPE for memory-limited PCA with incomplete data: From failure to success

Armin Eftekhari
(University of Oxford)
Abstract


Consider the problem of identifying an unknown subspace S from data with erasures and with limited memory available. To estimate S, suppose we group the measurements into blocks and iteratively update our estimate of S with each new block.

In the first part of this talk, we will discuss why estimating S by computing the "running average" of span of these blocks fails in general. Based on the lessons learned, we then propose SNIPE for memory-limited PCA with incomplete data, useful also for streaming data applications. SNIPE provably converges (linearly) to the true subspace, in the absence of noise and given sufficient measurements, and shows excellent performance in simulations. This is joint work with Laura Balzano and Mike Wakin.
 

Thu, 13 Oct 2016
12:00
L5

Boundary regularity for strong local minimizers and Weierstrass problem

Judith Campos Cordero
(Ausburg University)
Abstract
We prove partial regularity up to the boundary for strong local minimizers in the case of non-homogeneous integrands and a full regularity result for Lipschitz extremals with gradients of vanishing mean oscillation. As a consequence, we also establish a sufficiency result for this class of extremals, in connection with Grabovsky-Mengesha theorem (2009), which states that $C^1$ extremals at which the second variation is positive, are strong local minimizers. 
Subscribe to