Wed, 10 Jun 2015

11:30 - 13:00
L1

Materiality of Colour: from Neolithic Earth Colours to Contemporary Interference Pigments

Antoni Malinowski
(Mathematical Institute Commissioned Artist)
Abstract

Artist Antoni Malinowski has been commissioned to produce a major wall painting in the foyer of the new Mathematical Institute in Oxford, the Andrew Wiles Building. To celebrate and introduce that work Antoni and a series of distinguished speakers will demonstrate the different impacts and perceptions of colour produced by the micro-structure of the pigments, from an explanation of the pigments themselves to an examination of how the brain perceives colour.

Speakers:

Jo Volley, Gary Woodley and Malina Busch, the Pigment Timeline Project, Slade School of Fine Art, University College London

‘Pigment Timeline’

Dr. Ruth Siddall - Senior Lecturer in Earth Sciences, University College London

‘Pigments: microstructure and origins?’  

Antoni Malinowski

‘Spectrum Materialised’ 

Prof. Hannah Smithson Associate Professor, Experimental Psychology, University of Oxford and Tutorial Fellow, Pembroke College

‘Colour Perception‘

11.30am, Lecture Theatre 1

Mathematical Institute, University of Oxford

Andrew Wiles Building

Radcliffe Observatory Quarter

No booking required

 

Mon, 15 Jun 2015

12:00 - 13:00
L5

Quiver Invariant, Abelianisation and Mutation

Seung-Joo Lee
(Virginia Tech)
Abstract

In this talk, gauged quiver quantum mechanics will be analysed for BPS state counting. Despite the wall-crossing phenomenon of those countings, an invariant quantity of quiver itself, dubbed quiver invariant, will be carefully defined for a certain class of abelian quiver theories. After that, to get a handle on nonabelian theories, I will overview the abelianisation and the mutation methods, and will illustrate some of their interesting features through a couple of simple examples.

Mon, 08 Jun 2015

12:00 - 13:00
L5

E11 and Generalised Space-time

Peter West
(King's College, London)
Abstract

It has been conjectured that the fundamental theory of strings and branes has an $E_{11}$ symmetry. I will explain how this conjecture  leads to  a generalised space-time,  which is automatically equipped with its own geometry, as well as equations of motion for the fields that live on this generalised space-time.

 

Wed, 27 May 2015

11:00 - 12:30
S1.37

Lackenby's Trichotomy

Henry Bradford
(Oxford)
Abstract

Expansion, rank gradient and virtual splitting are all concepts of great interest in asymptotic group theory. We discuss a result of Marc Lackenby which demonstrates a surprising relationship between then, and give examples exhibiting different combinations of asymptotic behaviour.

Tue, 16 Jun 2015

14:30 - 15:00
L3

Are resultant methods numerically unstable for multidimensional rootfinding

Alex Townsend
(MIT)
Abstract
A popular class of algorithms for global multidimensional rootfinding are hidden-variable resultant methods. In two dimensions, when significant care is taken, 
they are competitive practical rootfinders.  However, in higher dimensions they are known to be notoriously difficult, if not impossible, to make numerically robust.  We will show that the most popular variant based on the Cayley resultant is inherently and spectacularly numerically unstable by a factor that grows exponentially with the dimension. Disastrous. Yet, perhaps, it can be circumnavigated. 
Subscribe to