16:00
16:00
Anosov Flows and Topology
Abstract
We will give a relaxed introduction to some of the most classical dynamical systems - Anosov flows. These flows were highly influential in the development of ideas which the audience might be more familiar with. For example, Anosov flows give rise to exponential group growth and taut foliations, both of which we will discuss. Finally, we will talk about some recent work obstructing Anosov flows and their combinatorial analogs - veering triangulations
Revisiting property (T)
Abstract
Property (T) was introduced by Kazhdan in the sixties to show that lattices in higher rank semisimple Lie groups are finitely generated. We will discuss some classical examples of groups that satisfy this property, with a particular focus on SL(3, R).
One-ended graph braid groups and where to find them
Abstract
Graph braid groups are similar to braid groups, except that they are defined as ‘braids’ on a graph, rather than the real plane. We can think of graph braid groups in terms of the discrete configuration space of a graph, which is a CW-complex. One can compute a presentation of a graph braid group using Morse theory. In this talk I will give a few examples on how to compute these presentations in terms of generating circuits of the graph. I will then go through a detailed example of a graph that gives a one-ended braid group.
Relationships between hyperbolic and classic knot invatiants
Abstract
For a hyperbolic knot there are two types of invariants, the hyperbolic invariants coming from the geometric structure and the classical invariants coming from the topology or combinatorics. It has been observed in many different cases that these seemingly different types of invariants are in fact related. I will give examples of these relationships and discuss in particular a link by Stoimenow between the determinant and volume.
Distinguishing free-by-(finite cyclic) groups by their finite quotients
Abstract
Spectra of surfaces and MCG actions on random covers
Abstract
The Ivanov conjecture is equivalent to the statement that every covering map of surfaces has the so-called Putman-Wieland property. I will discuss my recent work with Vlad Marković, where we prove it for asymptotically all coverings as the degree grows. I will give some overview of our main tool: spectral geometry, which is related to objects like the heat kernel of a hyperbolic surface, or Cheeger connectivity constant.
Algebra is Hard, Combinatorics is Simple(r)
Abstract
Questions in algebra, while deep and interesting, can be incredibly difficult. Thankfully, when studying the representation theory of the symmetric groups, one can often take algebraic properties and results and write them in the language of combinatorics; where one has a wide variety of tools and techniques to use. In this talk, we will look at the specific example of the submodule structure of 2-part Specht modules in characteristic 2, and answer which hook Specht modules are uniserial in characteristic 2. We will not need to assume the Riemann hypothesis for this talk.
Mathematrix: Interview Discussion
Abstract
Join us for a discussion about preparing for PhD and PostDoc Interviews. We will be talking to Melanie Rupflin and Mura Yakerson.
14:15
Hessian geometry of $G_2$-moduli spaces
Abstract
The moduli space of torsion-free $G_2$-structures on a compact $7$-manifold $M$ is a smooth manifold, locally diffeomorphic to an open subset of $H^3(M)$. It is endowed with a natural metric which arises as the Hessian of a potential, the properties of which are still poorly understood. In this talk, we will review what is known of the geometry of $G_2$-moduli spaces and present new formulae for the fourth derivative of the potential and the curvatures of the associated metric. We explain some interesting consequences for the simplest examples of $G_2$-manifolds, when the universal cover of $M$ is $\mathbb{R}^7$ or $\mathbb{R}^3 \times K3$. If time permits, we also make some comments on the general case.