Fri, 02 Mar 2018

14:00 - 15:00
L3

Multiscale, multiphase and morpho-poro-elastic models of tissue growth

Dr Reuben O’Dea
(School of Mathematical Sciences University of Nottingham)
Abstract

The derivation of so-called `effective descriptions' that explicitly incorporate microscale physics into a macroscopic model has garnered much attention, with popular applications in poroelasticity, and models of the subsurface in particular. More recently, such approaches have been applied to describe the physics of biological tissue. In such applications, a key feature is that the material is active, undergoing both elastic deformation and growth in response to local biophysical/chemical cues.

Here, two new macroscale descriptions of drug/nutrient-limited tissue growth are introduced, obtained by means of two-scale asymptotics. First, a multiphase viscous fluid model is employed to describe the dynamics of a growing tissue within a porous scaffold (of the kind employed in tissue engineering applications) at the microscale. Secondly, the coupling between growth and elastic deformation is considered, employing a morpho-elastic description of a growing poroelastic medium. Importantly, in this work, the restrictive assumptions typically made on the underlying model to permit a more straightforward multiscale analysis are relaxed, by considering finite growth and deformation at the pore scale.

In each case, a multiple scales analysis provides an effective macroscale description, which incorporates dependence on the microscale structure and dynamics provided by prototypical `unit cell-problems'. Importantly, due to the complexity that we accommodate, and in contrast to many other similar studies, these microscale unit cell problems are themselves parameterised by the macroscale dynamics.

In the first case, the resulting model comprises a Darcy flow, and differential equations for the volume fraction of cells within the scaffold and the concentration of nutrient, required for growth. Stokes-type cell problems retain multiscale dependence, incorporating active cell motion [1]. Example numerical simulations indicate the influence of microstructure and cell dynamics on predicted macroscale tissue evolution. In the morpho-elastic model, the effective macroscale dynamics are described by a Biot-type system, augmented with additional terms pertaining to growth, coupled to an advection--reaction--diffusion equation [2].

[1] HOLDEN, COLLIS, BROOK and O'DEA. (2018). A multiphase multiscale model for nutrient limited tissue growth, ANZIAM (In press)

[2] COLLIS, BROWN, HUBBARD and O'DEA. (2017). Effective Equations Governing an Active Poroelastic Medium, Proceedings of the Royal Society A. 473, 20160755

Fri, 23 Feb 2018

14:00 - 15:00
L1

Human stem cells for drug discovery

Dr Nicola Beer
(Novo Nordisk Research Centre Oxford (NNRCO)
Abstract

Dr Nicola Beer heads up the Department of Stem Cell Engineering at the new Novo Nordisk Research Centre Oxford. Her team will use human stem cells to derive metabolically-relevant cells and tissues such as islets, hepatocytes, and adipocytes todiscover novel secreted factors and corresponding signalling pathways which modify cell function, health, and viability. Bycombining in vitro-differentiated human stem cell-derived models with CRISPR and other genomic targeting techniques, the teamassay cell function from changes in a single gene up to a genome-wide scale. Understanding the genes and pathways underlying cell function (and dysfunction) highlights potential targets for new Type 2 Diabetes therapeutics. Dr Beer will talk about the work ongoing in her team, as well as more broadly about the role of human stem cells in drug discovery and patient treatment.

Tue, 13 Feb 2018

15:00 - 16:00

Active matter droplets and applications to single cell migration

Dr Rhoda Hawkins
(Department of Physics & Astronomy University of Sheffield)
Abstract

Please note that this seminar will take place at the Physical and Theoretical Chemistry Laboratory within the
Department of Chemistry, room, PTCL lecture theatre.

Fri, 02 Feb 2018

14:00 - 15:00
L3

Mechanical models for cell and tissue mechanotransduction

Dr Carina Dunlop
(Dept of Mathematics University of Surrey)
Abstract

The ability of cells to sense and respond to the mechanical properties of their environments is fundamental to cellular behaviour, with stiffness found to be a key control parameter. The physical mechanisms underpinning mechanosensing are, however, not well understood. I here consider the key physical cellular behaviours of active contractility of the internal cytoskeleton and cell growth, coupling these into mechanical models. These models suggest new distinct mechanisms of mechanotransduction in cells and tissues.

Fri, 26 Jan 2018

14:00 - 15:00
L3

Information and decision-making in dynamic cell signalling

Prof David Rand
(Zeeman Institute for Systems Biology University of Warwick)
Abstract

I will discuss a new theoretical approach to information and decisions in signalling systems and relate this to new experimental results about the NF-kappaB signalling system. NF-kappaB is an exemplar system that controls inflammation and in different contexts has varying effects on cell death and cell division. It is commonly claimed that it is information processing hub, taking in signals about the infection and stress status of the tissue environment and as a consequence of the oscillations, transmitting higher amounts of information to the hundreds of genes it controls. My aim is to develop a conceptual and mathematical framework to enable a rigorous quantifiable discussion of information in this context in order to follow Francis Crick's counsel that it is better in biology to follow the flow of information than those of matter or energy. In my approach the value of the information in the signalling system is defined by how well it can be used to make the "correct decisions" when those "decisions" are made by molecular networks. As part of this I will introduce a new mathematical method for the analysis and simulation of large stochastic non-linear oscillating systems. This allows an analytic analysis of the stochastic relationship between input and response and shows that for tightly-coupled systems like those based on current models for signalling systems, clocks, and the cell cycle this relationship is highly constrained and non-generic.

Wed, 14 Feb 2018
15:00
L4

Multivariate cryptography and the complexity of computing Groebner bases

Elisa Gorla
(University of Neufchatel (Switzerland))
Abstract

Multivariate cryptography is one of a handful of proposals for post-quantum cryptographic schemes, i.e. cryptographic schemes that are secure also against attacks carried on with a quantum computer. Their security relies on the assumption that solving a system of multivariate (quadratic) equations over a finite field is computationally hard. 

Groebner bases allow us to solve systems of polynomial equations. Therefore, one of the key questions in assessing the robustness of multivariate cryptosystems is estimating how long it takes to compute the Groebner basis of a given system of polynomial equations. 

After introducing multivariate cryptography and Groebner bases, I will present a rigorous method to estimate the complexity of computing a Groebner basis. This approach is based on techniques from commutative algebra and is joint work with Alessio Caminata (University of Barcelona).

 
Thu, 08 Mar 2018

14:00 - 15:00
L4

Nonlinear edge diffusion and the discrete maximum principle

Gabriel Barrenechea
(University of Strathclyde)
Abstract

In this talk I will review recent results on the analysis of shock-capturing-type methods applied to convection-dominated problems. The method of choice is a variant of the Algebraic Flux-Correction (AFC) scheme. This scheme has received some attention over the last two decades due to its very satisfactory numerical performance. Despite this attention, until very recently there was no stability and convergence analysis for it. Thus, the purpose of the works reviewed in this talk was to bridge that gap. The first step towards the full analysis of the method is a rewriting of it as a nonlinear edge-based diffusion method. This writing makes it possible to present a unified analysis of the different variants of it. So, minimal assumptions on the components of the method are stated in such a way that the resulting scheme satisfies the Discrete Maximum Principle (DMP) and is convergence. One property that will be discussed in detail is the linearity preservation. This property has been linked to the good performance of methods of this kind. We will discuss in detail its role and the impact of it in the overall convergence of the method. Time permitting, some results on a posteriori error estimation will also be presented. 
This talk will gather contributions with A. Allendes (UTFSM, Chile), E. Burman (UCL, UK), V. John (WIAS, Berlin), F. Karakatsani (Chester, UK), P. Knobloch (Prague, Czech Republic), and 
R. Rankin (U. of Nottingham, China).

Subscribe to