Asymptotic Rigidity of Self-shrinkers of Mean Curvature Flow
Abstract
In this talk, we use Carleman type techniques to address uniqueness of self-shrinkers of mean curvature flow with given asymptotic behaviors.
In this talk, we use Carleman type techniques to address uniqueness of self-shrinkers of mean curvature flow with given asymptotic behaviors.
Eigenvectors of square matrices are central to linear algebra. Eigenvectors of tensors are a natural generalization. The spectral theory of tensors was pioneered by Lim and Qi around 2005. It has numerous applications, and ties in closely with optimization and dynamical systems. We present an introduction that emphasizes algebraic and geometric aspects
I will review Bott's classical periodicity result about topological K-theory (with period 2 in the case of complex K-theory, and period 8 in the case of real K-theory), and provide an easy sketch of proof, based on the algebraic periodicity of Clifford algebras. I will then introduce the `higher real K-theory' of Hopkins and Miller, also known as TMF. I'll discuss its periodicity (with period 576), and present a conjecture about a corresponding algebraic periodicity of `higher Clifford algebras'. Finally, applications to physics will be discussed.