Congratulations to Philip Maini (pictured), Jonathan Pila and Alison Etheridge who have been elected Fellows of the Royal Society.
Congratulations also to Ben Hambly who has been elected Fellow of the Institute of Mathematical Statistics.
Hyperbolic volume of links, via pants graph and train tracks
Abstract
A result of Jeffrey Brock states that, given a hyperbolic 3-manifold which is a mapping torus over a surface $S$, its volume can be expressed in terms of the distance induced by the monodromy map in the pants graph of $S$. This is an abstract graph whose vertices are pants decompositions of $S$, and edges correspond to some 'elementary alterations' of those.
I will show how this theorem gives an estimate for the volume of hyperbolic complements of closed braids in the solid torus, in terms of braid properties. The core piece of such estimate is a generalization of a result of Masur, Mosher and Schleimer that train track splitting sequences (which I will define in the talk) induce quasi-geodesics in the marking graph.
Ricci flow invariant curvature conditions
Abstract
In this talk we're going to discuss Hamilton's maximum principle for the Ricci flow. As an application, I would like to explain a technique due to Boehm and Wilking which provides a general tool to obtain new Ricci flow invariant curvature conditions from given ones. As we'll see, it plays a key role in Brendle and Schoen's proof of the differentiable sphere theorem.
Zariski Geometries
Abstract
The geometry of the Ising model
Abstract
The Ising model is a well-known statistical physics model, defined on a two-dimensional lattice. It is interesting because it exhibits a "phase transition" at a certain critical temperature. Recent mathematical research has revealed an intriguing geometry in the model, involving discrete holomorphic functions, spinors, spin structures, and the Dirac equation. I will try to outline some of these ideas.